精英家教網 > 高中數學 > 題目詳情
8.某幾何體三視圖如圖所示,則該幾何體的體積為( 。
A.2B.4C.6D.12

分析 由已知中的三視圖可得:該幾何體是以俯視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是以俯視圖為底面的四棱錐,
其底面面積S=$\frac{1}{2}$(1+2)×2=3,
高h=2,
故體積V=$\frac{1}{3}Sh$=2,
故選:A

點評 本題考查的知識點是棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.已知橢圓C的焦點F1、F2在x軸上,離心率為$\frac{1}{2}$,過F1作直線l交C于A、B兩點,△F2AB的周長為8,則C的標準方程為( 。
A.$\frac{x^2}{16}+\frac{y^2}{12}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{2}+{y^2}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥$\overrightarrow$,則k=12.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=$\sqrt{3}$AD,AE⊥PC于點E,EF∥CD,交PD于點F
(Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D-AE-F的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD與底面ABCD成30°角,E是PD的中點.
(1)點H在AC上且EH⊥AC,求$\overrightarrow{EH}$的坐標;
(2)求AE與平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.設sin2α=cosα,α∈($\frac{π}{2}$,π),則tan(α+$\frac{π}{3}$)的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求證:f(ab)>|a|f($\frac{a}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數f(x)=x2-(m-2)x-2m
(1)當m=4且x∈[2,3]時,求函數f(x)的值域;
(2)若m∈[1,3]時,f(x)≤0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知函數f(x)是定義在R上的偶函數,且f(x+1)為奇函數.若f(2)=1,則f(1)+f(2)+f(3)+…+f(2015)=( 。
A.1B.2014C.0D.-2014

查看答案和解析>>

同步練習冊答案