如圖,在平面直角坐標系中,已知,,是橢圓上不同的三點,,,在第三象限,線段的中點在直線上.
(1)求橢圓的標準方程;
(2)求點C的坐標;
(3)設(shè)動點在橢圓上(異于點,,)且直線PB,PC分別交直線OA于,兩點,證明為定值并求出該定值.
(1)求橢圓方程一般用待定系數(shù)法.本題已知橢圓過兩點,列兩個方程,解出的值,(2)求點的坐標,需列出兩個方程.一是點C在橢圓上,即,二是的中點在直線上,即.注意到在第三象限,舍去正值.(3)題意明確,思路簡潔,就是求出點的坐標,算出為定值.難點是如何消去參數(shù).因為點在直線: 上,所以可設(shè),.選擇作為參數(shù),即用表示點的坐標.由三點共線,解得,同理解得.從而有,這里主要用到代入化簡.本題也可利用橢圓參數(shù)方程或三角表示揭示為定值.
解析試題分析:(1),(2),(3).
試題解析:(1)由已知,得 解得 2分
所以橢圓的標準方程為. 3分
(2)設(shè)點,則中點為.
由已知,求得直線的方程為,從而.①
又∵點在橢圓上,∴.②
由①②,解得(舍),,從而. 5分
所以點的坐標為. 6分
(3)設(shè),,.
∵三點共線,∴,整理,得. 8分
∵三點共線,∴,整理,得. 10分
∵點在橢圓上,∴,.
從而. 14分
所以. 15分
∴為定值,定值為. 16分
考點:橢圓標準方程,直線與橢圓位置關(guān)系
科目:高中數(shù)學 來源: 題型:解答題
(理)已知點是平面直角坐標系上的一個動點,點到直線的距離等于點到點的距離的2倍.記動點的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個不同點,若直線不過點,設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問:是否存在一個定圓,與以動點為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個定圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線上的任意一點到該拋物線焦點的距離比該點到軸的距離多1.
(1)求的值;
(2)如圖所示,過定點(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、、四點.
(i)求四邊形面積的最小值;
(ii)設(shè)線段、的中點分別為、兩點,試問:直線是否過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,橢圓以的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標原點,點、分別在橢圓和上,,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.
(1)求證:A、C、T三點共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.
(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.
(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com