【題目】如圖,在三棱柱中,平面,,的中點(diǎn)為.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.

【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)在棱上存在點(diǎn),使得平面,且.

【解析】

(Ⅰ)可證明平面,從而得到.

(Ⅱ)利用,,兩兩互相垂直建立如圖所示空間直角坐標(biāo)系,求出平面的法向量平面的法向量后可求二面角的余弦值.

(Ⅲ)設(shè),則可用表示,利用與平面的法向量垂直可求,從而得到的值.

證明:(Ⅰ)因?yàn)?/span>平面平面,所以.

因?yàn)?/span>,所以.

又因?yàn)?/span>,

所以平面.

因?yàn)?/span>平面,所以.

(Ⅱ)由(Ⅰ)可知,,兩兩互相垂直,

如圖,建立空間直角坐標(biāo)系

因?yàn)?/span>

所以,,,.

因?yàn)?/span>平面,

所以即為平面的一個(gè)法向量.

設(shè)平面的一個(gè)法向量為,

,

,則.

于是.

所以.

由題知二面角為銳角,所以其余弦值為.

(Ⅲ)假設(shè)棱上存在點(diǎn),使得平面.

,.

因?yàn)?/span>的中點(diǎn),所以.

所以.

平面,則,解得.

又因?yàn)?/span>平面.

所以在棱上存在點(diǎn),使得平面,且.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是奇函數(shù)(其中,

1)求的值;

2)討論的單調(diào)性;

3)當(dāng)的定義域區(qū)間為時(shí),的值域?yàn)?/span>,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖一塊長方形區(qū)域,,在邊的中點(diǎn)處有一個(gè)可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè)探照燈照射在長方形內(nèi)部區(qū)域的面積為.

(1)當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),求的最大值;

(3)若探照燈每9分鐘旋轉(zhuǎn)“一個(gè)來回”(轉(zhuǎn)到,再回到,稱“一個(gè)來回”,忽略處所用的時(shí)間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點(diǎn),且,求點(diǎn)在“一個(gè)來回”中被照到的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為,定義:為橢圓特征三角形,如果兩個(gè)橢圓的特征三角形是相似三角形,那么稱這兩個(gè)橢圓為相似橢圓,且特征三角形的相似比即為相似橢圓的相似比,已知點(diǎn)是橢圓的一個(gè)焦點(diǎn),且上任意一點(diǎn)到它的兩焦點(diǎn)的距離之和為4

1)若橢圓與橢圓相似,且的相似比為21,求橢圓的方程.

2)已知點(diǎn)是橢圓上的任意一點(diǎn),若點(diǎn)是直線與拋物線異于原點(diǎn)的交點(diǎn),證明:點(diǎn)一定在雙曲線.

3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù),又在區(qū)間上遞增的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當(dāng)x+2y取得最大值時(shí),的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為),M為該曲線上的任意一點(diǎn).

1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);

2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)當(dāng),討論的零點(diǎn)個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)討論的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明:.

查看答案和解析>>

同步練習(xí)冊答案