【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進(jìn)行了問卷調(diào)查得到如下列聯(lián)表:


常喝

不常喝

合計

肥胖


2


不肥胖


18


合計



30

已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為

1)請將上面的列表補(bǔ)充完整;

2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由;

34名調(diào)查人員隨機(jī)分成兩組,每組2人,一組負(fù)責(zé)問卷調(diào)查,另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.

參考數(shù)據(jù):


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

【答案】1)表格祥見解析;(2)有,理由祥見解析;(3.

【解析】試題分析:(1)根據(jù)全部50人中隨機(jī)抽取1人看營養(yǎng)說明的學(xué)生的概率為,做出看營養(yǎng)說明的人數(shù),這樣用總?cè)藬?shù)減去看營養(yǎng)說明的人數(shù),剩下的是不看的,根據(jù)所給的另外兩個數(shù)字,填上所有數(shù)字.

2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入求觀測值的公式,把觀測值同臨界值進(jìn)行比較,得到有99.5%的把握說看營養(yǎng)說明與性別有關(guān).

3)利用列舉法,求出基本事件的個數(shù),即可求出正好抽到一男一女的概率.

試題解析:(1)設(shè)常喝碳酸飲料肥胖的學(xué)生有人, ,


常喝

不常喝

合計

肥胖

6

2

8

不胖

4

18

22

合計

10

20

30

2)由已知數(shù)據(jù)可求得: ,

因此有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).

3)設(shè)其他工作人員為丙和丁,4人分組的所有情況如下表

小組

1

2

3

4

5

6

收集數(shù)據(jù)

甲乙

甲丙

甲丁

乙丙

乙丁

丙丁

處理數(shù)據(jù)

丙丁

乙丁

乙丙

甲丁

甲丙

甲乙

分組的情況總有6中,工作人員甲 負(fù)責(zé)收集數(shù)據(jù)且工作人員乙負(fù)責(zé)處理數(shù)據(jù)占兩種,

所以工作人員甲負(fù)責(zé)收集數(shù)據(jù)且工作人員處理數(shù)據(jù)的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為,的交點(diǎn),的中點(diǎn).

(I)求證:直線平面

(II)求證:平面

(III)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)三點(diǎn).

(1) 求過三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑;

(2)求過點(diǎn)與條件 (1) 的圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的極值;

(Ⅱ) 時,討論的單調(diào)性;進(jìn)一步地,若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, , , 中點(diǎn), 交于點(diǎn)

Ⅰ)求證: 平面

Ⅱ)求證: 平面

Ⅲ)在線段上是否存在點(diǎn),使得?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.某幾何體如圖所示, 平面, , 是邊長為的正三角形, , ,點(diǎn)分別是、的中點(diǎn).

I)求證: 平面

II)求證:平面平面

III)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長為,,分別是棱的中點(diǎn),過直線,的平面分別與棱、交于,,設(shè),給出以下四個命題

平面平面;

當(dāng)且僅當(dāng)時,四邊形的面積最小

四邊形周長,是單調(diào)函數(shù);

四棱錐的體積為常函數(shù)

以上命題中假命題的序號為( ).

A. ①④ B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在生產(chǎn)過程中,測得纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量)共有100個數(shù)據(jù),將數(shù)據(jù)分組如表:

分組

頻數(shù)

合計

(1)畫出頻率分布表,并畫出頻率分布直方圖;

2)估計纖度落在中的概率及纖度小于的概率是多少?

3)從頻率分布直方圖估計出纖度的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案