已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;②f(0)f(1)<0;
③f(0)f(3)>0;④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是________.
②③解析 ∵f′(x)=3x2-12x+9=3(x-1)(x-3),
由f′(x)<0,得1<x<3,由f′(x)>0,得x<1或x>3.
∴f(x)在區(qū)間(1,3)上是減函數(shù),在區(qū)間(-∞,1)(3,+∞)上是增函數(shù).
又a<b<c,f(a)=f(b)=f(c)=0.
∴y極大值=f(1)=4-abc>0,
y極小值=f(3)=-abc<0.
∴0<abc<4.
∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3為函數(shù)f(x)的極值點(diǎn),后一種情況不可能成立,如圖.
∴f(0)<0,∴f(0)f(1)<0,f(0)f(3)>0.
∴正確結(jié)論的序號(hào)是②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是( )
A.(-∞,0] B.(-∞, 1]
C.[-2,1] D.[-2,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過(guò)點(diǎn)P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;
(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
當(dāng)x∈[-2,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[-5,-3] B.
C.[-6,-2] D.[-4,-3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)是f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f′(x)是函數(shù)f(x)=x+的導(dǎo)函數(shù),則下列結(jié)論中正確的是( )
A.∃x0∈R,∀x∈R,且x≠0,f(x)≤f(x0)
B.∃x0∈R,∀x∈R,且x≠0,f(x)≥f(x0)
C.∃x0∈R,∀x∈(x0,+∞),f′(x)<0
D.∃x0∈R,∀x∈(x0,+∞),f′(x)>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知定義在R上的偶函數(shù)f(x),f(1)=0,當(dāng)x>0時(shí)有>0,則不等式xf(x)>0的解集為( )
A.{x|-1<x<0} B.{x|x>1或-1<x<0}
C.{x|x>0} D.{x|-1<x<1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=sin(x-φ),且f(x)dx=0,則函數(shù)f(x)的圖象的一條對(duì)稱軸是( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com