【題目】即將于年夏季畢業(yè)的某大學(xué)生準(zhǔn)備到貴州非私營單位求職,為了了解工資待遇情況,他在貴州省統(tǒng)計(jì)局的官網(wǎng)上,查詢到年到年非私營單位在崗職工的年平均工資近似值(單位:萬元),如下表:

年份

序號(hào)

年平均工資

(1)請(qǐng)根據(jù)上表的數(shù)據(jù),利用線性回歸模型擬合思想,求關(guān)于的線性回歸方程,的計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位);

(2)如果畢業(yè)生對(duì)年平均工資的期望值為8.5萬元,請(qǐng)利用(1)的結(jié)論,預(yù)測年的非私營單位在崗職工的年平均工資(單位:萬元。計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位),并判斷年平均工資能否達(dá)到他的期望.

參考數(shù)據(jù):,,

附:對(duì)于一組具有線性相關(guān)的數(shù)據(jù):,,

其回歸直線的斜率和截距的最小二乘法估計(jì)分別為

,

【答案】(1);(2)預(yù)測年的非私營單位在崗職工的年平均工資為萬元,達(dá)到了他的期望.

【解析】

1)求出回歸系數(shù),可得y關(guān)于x的線性回歸方程;

2由(1)求出年在崗職工的年平均工資,與期望值比較,可得結(jié)論.

(1)由已知,得,.

,

所以,,

關(guān)于的線性回歸方程為

(2)由(1),

當(dāng)時(shí),.

所以,預(yù)測年的非私營單位在崗職工的年平均工資為萬元,達(dá)到了他的期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;

(2)若斜率為-1的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過點(diǎn)的直線與圓交于兩點(diǎn),

1)若,求直線的方程;

2)若直線軸交于點(diǎn),設(shè),,R,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:;

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機(jī)抽取名學(xué)生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學(xué)生進(jìn)入第二輪面試,

已知學(xué)生甲和學(xué)生乙的成績均在第組,求學(xué)生甲和學(xué)生乙同時(shí)進(jìn)入第二輪面試的概率;

根據(jù)直方圖試估計(jì)這名學(xué)生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c, 且, 若.

(1)求角B的大小;

(2)若, 且△ABC的面積為, 求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,.MCD的中點(diǎn).

1)若點(diǎn)EPC的中點(diǎn),求證:BE∥平面PAD;

2)當(dāng)平面PBD⊥平面ABCD時(shí),求點(diǎn)A到平面CEM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,伴隨著我國經(jīng)濟(jì)持續(xù)增長,戶均家庭教育投入戶均家庭教育投入是指一個(gè)家庭對(duì)家庭成員教育投入的總和也在不斷提高我國某地區(qū)2012年至2018年戶均家庭教育投入單位:千元的數(shù)據(jù)如表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代號(hào)t

1

2

3

4

5

6

7

戶均家庭教育投入y

y關(guān)于t的線性回歸方程;

利用中的回歸方程,分析2012年至2018年該地區(qū)戶均家庭教育投入的變化情況,并預(yù)測2019年該地區(qū)戶均家庭教育投入是多少.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

同步練習(xí)冊(cè)答案