【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點(diǎn),AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
【答案】(1)2(2)
【解析】(1)如圖,連接BD交AC于點(diǎn)O
∵BC=CD,AC平分角BCD,∴AC⊥BD
以O為坐標(biāo)原點(diǎn),OB、OC所在直線分別為x軸、y軸,
建立空間直角坐標(biāo)系O﹣xyz,
則OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.
又∵OD=CDsin=,
∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)
由于PA⊥底面ABCD,可設(shè)P(0,﹣3,z)
∵F為PC邊的中點(diǎn),∴F(0,﹣1,),由此可得=(0,2,),
∵=(,3,﹣z),且AF⊥PB,
∴=6﹣=0,解之得z=2(舍負(fù))
因此,=(0,0,﹣2),可得PA的長為2;
(2)由(1)知=(﹣,3,0),=(,3,0),=(0,2,),
設(shè)平面FAD的法向量為=(x1,y1,z1),平面FAB的法向量為=(x2,y2,z2),
∵=0且=0,∴,取y1=得=(3,,﹣2),
同理,由=0且=0,解出=(3,﹣,2),
∴向量、的夾角余弦值為cos<,>===
因此,二面角B﹣AF﹣D的正弦值等于=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司決定每月給推銷員確定個具體的銷售目標(biāo),對推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.
(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.
②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬元時,能夠使70%的推銷員完成任務(wù)?并說明理由.
(2)該公司決定從月銷售額為和的兩個小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來自同一個小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(為參數(shù)),A,B是C上的動點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為.
(1)求橢圓C的極坐標(biāo)方程和點(diǎn)D的直角坐標(biāo);
(2)利用橢圓C的極坐標(biāo)方程證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)工會利用“健步行”開展明年健步走積分獎勵活動.會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統(tǒng)中隨機(jī)抽取了1000名會員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,,九組,整理得到如下頻率分布直方圖:
(1)從當(dāng)天步數(shù)在,,的會員中按分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人,求這2人積分之和不少于220分的概率;
(2)求該組數(shù)據(jù)的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點(diǎn)分別為,其短半軸長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點(diǎn)的直線與橢圓相交于兩點(diǎn).若直線與的斜率之和為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),,且圓心在直線上
(1)求圓C的方程.
(2)過點(diǎn)的直線與圓C交于A,B兩點(diǎn),問:在直線上是否存在定點(diǎn)N,使得(,分別為直線AN,BN的斜率)恒成立?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,則A類轎車有10輛
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
(1)求下表中z的值;
(2)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個總體,從中任取一個得分?jǐn)?shù)記這8輛轎車的得分的平均數(shù)為,定義事件{,且函數(shù)沒有零點(diǎn)},求事件發(fā)生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐中,平面.,,.點(diǎn)是與的交點(diǎn),點(diǎn)在線段上且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現(xiàn)以邊AC的中點(diǎn)D為坐標(biāo)原點(diǎn),平面ABC內(nèi)垂直于AC的直線為軸,直線AC為軸,直線DA1為軸建立空間直角坐標(biāo)系,解決以下問題:
(1)求異面直線AB與A1C所成角的余弦值;
(2)求直線AB與平面A1BC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com