【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(按逆時針方向)3圈,當水輪上點從水中浮現(xiàn)時開始計時,即從圖中點開始計算時間.
(1)當秒時點離水面的高度_________;
(2)將點距離水面的高度(單位: )表示為時間(單位: )的函數(shù),則此函數(shù)表達式為_______________ .
科目:高中數(shù)學 來源: 題型:
【題目】已知某種細菌的適宜生長溫度為,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量/個 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于的回歸方程類型(結果精確到0.1);
(2)當溫度為時,該種細菌的繁殖數(shù)量的預報值為多少?
參考公式:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,.參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個頂點是,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知矩形的四條邊都與橢圓相切,設直線AB方程為,求矩形面積的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,分別為的中點.
(Ⅰ)證明:平面∥平面;
(Ⅱ)若,
(1)求平面與平面所成銳二面角的余弦值;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在點處的切線與直線平行.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設.
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當時,判斷函數(shù)有幾個零點,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(按逆時針方向)3圈,當水輪上點從水中浮現(xiàn)時開始計時,即從圖中點開始計算時間.
(1)當秒時點離水面的高度_________;
(2)將點距離水面的高度(單位: )表示為時間(單位: )的函數(shù),則此函數(shù)表達式為_______________ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在下列四個幾何體中,它們的三視圖(主視圖、左視圖、俯視圖)中有且僅有兩個相同,而另一個不同的幾何體是( )
(1)棱長為1的正方體
(2)底面直徑和高均為1的圓柱
(3)底面直徑和高均為1的圓錐
(4)底面邊長為1、高為2的正四棱柱
A.(2)(3)(4)B.(1)(2)(3)
C.(1)(3)(4)D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,過直線左側的動點作于點的角平分線交軸于點,且,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)過點作直線交曲線于兩點,點在上,且軸,試問:直線是否恒過定點?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com