【題目】已知函數(shù)f(x)=x﹣ . (Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).
【答案】解:(Ⅰ)函數(shù)f(x)=x﹣ 的定義域是D=(﹣∞,0)∪(0,+∞),
任取x∈D,則﹣x∈D,
且f(﹣x)=﹣x﹣ =﹣(x﹣ )=﹣f(x),
∴f(x)是定義域上的奇函數(shù);
(Ⅱ)證明:設(shè)x1,x2∈(0,+∞),且x1<x2,
則f(x1)﹣f(x2)=(x1﹣ )﹣(x2﹣ )
=(x1﹣x2)+( ﹣ )
= ;
∵0<x1<x2,∴x1x2>0,
x1﹣x2<0,x1x2+1>0,
∴ <0,
即f(x1)<f(x2),
∴f(x)在(0,+∞)上是增函數(shù).
【解析】(Ⅰ)求出函數(shù)f(x)的定義域,利用奇偶性的定義即可判斷f(x)是奇函數(shù);(Ⅱ)利用單調(diào)性的定義即可證明f(x)在(0,+∞)上是增函數(shù).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較,以及對(duì)函數(shù)的奇偶性的理解,了解偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)當(dāng)b=6,sinC=2sinA時(shí),求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點(diǎn).
(Ⅰ)求證:CB1⊥平面ABC1;
(Ⅱ)求證:MN∥平面ABC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是公差d不為0的等差數(shù)列,a1=2,Sn為其前n項(xiàng)和.
(1)當(dāng)a3=6時(shí),若a1 , a3 , , …, 成等比數(shù)列(其中3<n1<n2<…<nk),求nk的表達(dá)式;
(2)是否存在合適的公差d,使得{an}的任意前3n項(xiàng)中,前n項(xiàng)的和與后n項(xiàng)的和的比值等于定常數(shù)?求出d,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且2cosA= .
(1)若a2﹣c2=b2﹣mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一直線l過(guò)直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e,過(guò)F2的直線與橢圓的交于A,B兩點(diǎn),若△F1AB是以A為頂點(diǎn)的等腰直角三角形,則e2=( )
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設(shè)a>0,將函數(shù)f(x)的圖象先向右平移a個(gè)單位長(zhǎng)度,再向下平移a2個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象. (Ⅰ)若函數(shù)g(x)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<4<x2 , 求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)連續(xù)函數(shù)在區(qū)間[m,n]上的值域?yàn)閇λ,μ],若有 ,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com