【題目】已知關(guān)于x的方程2x2﹣( +1)x+m=0的兩根為sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)+ 的值;
(3)方程的兩根及此時θ的值.
【答案】
(1)
解:∵sinθ,cosθ是方程2x2﹣( +1)x+m=0的兩個根,
∴sinθ+cosθ= ,sinθcosθ=
則(sinθ+cosθ)2=1+2sinθcosθ=1+m=
∴m= ;
(2)
解: + = =sinθ+cosθ=
(3)
解:由(1)知,sinθ+cosθ= ,sinθcosθ=
∴sinθ= ,cosθ= 或sinθ= ,cosθ= ,
∵θ∈(0,π),
∴θ= 或
【解析】(1)由sinθ,cosθ是方程2x2﹣( +1)x+m=0的兩個根,根據(jù)韋達定理(一元二次方程根與系數(shù)的關(guān)系)我們易得:sinθ+cosθ= ,sinθcosθ= ,結(jié)合同角三角函數(shù)平方關(guān)系,根據(jù)一個關(guān)于m的方程,解方程即可得到答案;(2)切化弦,代入計算可得結(jié)論;(3)由(1)知,sinθ+cosθ= ,sinθcosθ= ,可得sinθ= ,cosθ= 或sinθ= ,cosθ= ,從而可求θ的值.
【考點精析】解答此題的關(guān)鍵在于理解同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣5,1]上的所有實根之和為( )
A.﹣5
B.﹣6
C.﹣7
D.﹣8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:關(guān)于x的不等式的解集為;命題q:函數(shù)為增函數(shù).命題r:a滿足.
(1)若p∨q是真命題且p∧q是假題.求實數(shù)a的取值范圍.
(2)試判斷命題¬p是命題r成立的一個什么條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知橢圓:,其中,,分別為其左,右焦點,點是橢圓上一點,,且.
(1)當,,且時,求的值;
(2)若,試求橢圓離心率的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一枚質(zhì)地均勻的骰子,連續(xù)投擲兩次,計算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點數(shù)之和是7的結(jié)果有多少種?
(3)向上的點數(shù)之和是7的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱的側(cè)棱與底面垂直,體積為,底面是邊長為的正三角形.若為底面的中心,則與平面所成角的大小為( ).
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com