年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列中,,,.
(1)求證:是等差數(shù)列;并求數(shù)列的通項(xiàng)公式;
(2)假設(shè)對(duì)于任意的正整數(shù)、,都有,則稱該數(shù)列為“域收斂數(shù)列”. 試判斷: 數(shù)列,是否為一個(gè)“域收斂數(shù)列”,請(qǐng)說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點(diǎn)在函數(shù)的圖像上,其中為正整數(shù)。
(1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)之積為,即,求數(shù)列的通項(xiàng)及關(guān)于的表達(dá)式。
(3)記,求數(shù)列的前項(xiàng)之和,并求使的的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,
即,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省等八校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項(xiàng)積為,即,求;
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第五次月考理科數(shù)學(xué) 題型:填空題
如果有窮數(shù)列a1,a2,…an(a∈N*)滿足條件:,我們稱
其為“對(duì)稱數(shù)列”,例如:數(shù)列1,2,3,3,2,1和數(shù)列1,2,3,4,3,2,1都為“對(duì)稱數(shù)列”。已知數(shù)列{bn}是項(xiàng)數(shù)不超過2m(m>1,m∈N*)的“對(duì)稱數(shù)列”,并使得1,2,22,……,2m-1依次為該數(shù)列中連續(xù)的前m項(xiàng),則數(shù)列的前2009項(xiàng)和S2009所有可能的取值的序號(hào)為 。
① 22009—1 ②2·(22009—1) ③3×2m-1—22m-2010—1 ④2m+1—22m-2009—1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com