若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點在函數(shù)的圖象上,其中為正整數(shù).

(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;

(Ⅱ)設(Ⅰ)中“平方遞推數(shù)列”的前項積為,即,求;

(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項和,并求使的最小值.

 

【答案】

(Ⅰ)見解析;(Ⅱ); (Ⅲ),

【解析】

試題分析:(Ⅰ)將點的坐標代入函數(shù)解析式得,由定義可知是“平方遞推數(shù)列”. 由是以為首項,2為公比的等比數(shù)列;

(Ⅱ)先由(Ⅰ)中等比數(shù)列得,故:;

(Ⅲ)先求得,再求,由,得,從而解得.

試題解析:(I)由題意得:,  即 ,

是“平方遞推數(shù)列”.                        2分

又有是以為首項,2為公比的等比數(shù)列.4分

(II)由(I)知 ,                     5分

.8分

(III) ,                            9分

 ,                               10分

,即,,

.                          13分

考點:1.等比數(shù)列的判定;2.數(shù)列求和;3.數(shù)列不等式的解法

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點在函數(shù)的圖像上,其中為正整數(shù)。

  (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

  (2)設(1)中“平方遞推數(shù)列”的前項之積為,即,求數(shù)列的通項及關于的表達式。

(3)記,求數(shù)列的前項之和,并求使的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列滿足,則稱數(shù)列為調(diào)和數(shù)列。已知數(shù)列為調(diào)和數(shù)列,且,則      。

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山東省淄博市高三3月模擬考試理科數(shù)學試卷(解析版) 題型:解答題

若數(shù)列滿足,則稱數(shù)列平方遞推數(shù)列.已知數(shù)列,,點在函數(shù)的圖象上,其中為正整數(shù).

1)證明數(shù)列平方遞推數(shù)列,且數(shù)列為等比數(shù)列;

2設(1)中平方遞推數(shù)列的前項積為

,求;

3)在(2)的條件下,記,求數(shù)列的前項和,并求使的最小值

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年海南省等4校聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題

若數(shù)列滿足,則稱數(shù)列為“等方比數(shù)列”甲:數(shù)列為“等比數(shù)列”;乙:數(shù)列為“等方比數(shù)列”;則

A.甲是乙的充分不必要條件,          B.甲是乙的必要不充分條件,    

C.甲是乙的充要條件,              D.甲既不是乙的充分條件也不是乙的必要條件,

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊陽一中期末理)若數(shù)列滿足,則稱數(shù)列為調(diào)和數(shù)列。已知數(shù)為調(diào)和數(shù)列,且,則      。

查看答案和解析>>

同步練習冊答案