【題目】隨著人們生活水平的不斷提高,家庭理財(cái)越來越引起人們的重視.某一調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了5個(gè)家庭的月收入與月理財(cái)支出(單位:元)的情況,如下表所示:
月收入(千元) | 8 | 10 | 9 | 7 | 11 |
月理財(cái)支出(千元) |
(I)在下面的坐標(biāo)系中畫出這5組數(shù)據(jù)的散點(diǎn)圖;
(II)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(III)根據(jù)(II)的結(jié)果,預(yù)測(cè)當(dāng)一個(gè)家庭的月收入為元時(shí),月理財(cái)支出大約是多少元?
(附:回歸直線方程中,,.)
【答案】(1)見解析.
(2).
(3) 元.
【解析】分析:(I)根據(jù)表中的數(shù)據(jù),即可作出散點(diǎn)圖;
(II)由表中數(shù)據(jù),利用最小二乘法,求得,進(jìn)而得出回歸直線方程;
(III)由(II)中的回歸直線方程,令,代入回歸方程,求得的值,即可作出預(yù)測(cè).
詳解:(I)散點(diǎn)圖如下:
(II)由表中數(shù)據(jù)可得:,,,
因此,
,
故關(guān)于的線性回歸方程為.
(III)由于元千元,
令,代入回歸方程,
可得千元,即元.
故可預(yù)測(cè)當(dāng)一個(gè)家庭的月收入為元時(shí),月理財(cái)支出大約是元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷售,得到如下數(shù)據(jù):
單價(jià)(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求銷量(件)關(guān)于單價(jià)(元)的線性回歸方程;
(2)若單價(jià)定為10元,估計(jì)銷量為多少件;
(3)根據(jù)銷量關(guān)于單價(jià)的線性回歸方程,要使利潤最大,應(yīng)將價(jià)格定為多少?
參考公式:,.參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)問:能否為偶函數(shù)?請(qǐng)說明理由;
(2)總存在一個(gè)區(qū)間,當(dāng)時(shí),對(duì)任意的實(shí)數(shù),方程無解,當(dāng)時(shí),存在實(shí)數(shù),方程有解,求區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在一次射擊預(yù)選賽中,甲、乙兩人各射擊次,兩人成績的條形統(tǒng)計(jì)圖如圖所示,則下列四個(gè)選項(xiàng)中判斷不正確的是( )
A. 甲的成績的平均數(shù)小于乙的成績的平均數(shù)
B. 甲的成績的中位數(shù)小于乙的成績的中位數(shù)
C. 甲的成績的方差大于乙的成績的方差
D. 甲的成績的極差小于乙的成績的極差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價(jià)萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : 過點(diǎn)的直線交拋物線于兩點(diǎn),設(shè)
(1)若點(diǎn) 關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線經(jīng)過拋物線 的焦點(diǎn);
(2)若求當(dāng)最大時(shí),直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊運(yùn)動(dòng)員每次擊中目標(biāo)的概率是,在某次訓(xùn)練中,他只有4發(fā)子彈,并向某一目標(biāo)射擊.
(1)若4發(fā)子彈全打光,求他擊中目標(biāo)次數(shù)的數(shù)學(xué)期望;
(2)若他擊中目標(biāo)或子彈打光就停止射擊,求消耗的子彈數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表中提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的四組對(duì)應(yīng)數(shù)據(jù).
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為45噸標(biāo)準(zhǔn)煤,試根據(jù)(1)中的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com