【題目】已知函數(shù),.

(1)問:能否為偶函數(shù)?請(qǐng)說(shuō)明理由;

(2)總存在一個(gè)區(qū)間,當(dāng)時(shí),對(duì)任意的實(shí)數(shù),方程無(wú)解,當(dāng)時(shí),存在實(shí)數(shù),方程有解,求區(qū)間.

【答案】(1)不可能是偶函數(shù);(2).

【解析】分析:(1)根據(jù)偶函數(shù)定義,分類討論不同情況下是否存在偶函數(shù)的可能。

(2)討論在x取正數(shù)、負(fù)數(shù)兩種不同情況下的解集;再對(duì)每個(gè)情況下對(duì)a進(jìn)行分類討論存在性成立的條件。

詳解:(1)定義域?yàn)?/span>關(guān)于原點(diǎn)對(duì)稱,

當(dāng)時(shí),為偶函數(shù),

當(dāng)時(shí),,則,

,

,則,

,則,

所以不可能恒等于零,

不可能是偶函數(shù).

(2)先考慮,

①當(dāng)時(shí),無(wú)解;

②當(dāng)時(shí),,只有當(dāng)時(shí),才有

③當(dāng)時(shí),可化為

所以

因?yàn)?/span>不是上式的根,所以,

解得,

即當(dāng)時(shí),;

再考慮

①當(dāng)時(shí),無(wú)解;

②當(dāng)時(shí),,只有當(dāng)時(shí),才有

③當(dāng)時(shí),可化為,

所以

因?yàn)?/span>不是上式的根,所以,

解得

即當(dāng)時(shí),

綜上,區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比不為1的等比數(shù)列{an}的前5項(xiàng)積為243,且2a3為3a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列 的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)黨的十九大所提出的教育教學(xué)改革,某校啟動(dòng)了數(shù)學(xué)教學(xué)方法的探索,學(xué)校將髙一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班40人,甲班按原有傳統(tǒng)模式教學(xué),乙班實(shí)施自主學(xué)習(xí)模式.經(jīng)過(guò)一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來(lái)的數(shù)學(xué)成績(jī)?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績(jī)均在[50,100],按照區(qū)間[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80(百分制)為優(yōu)秀,

,

(I)完成表格,并判斷是否有90%以上的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與教學(xué)改革有關(guān)

〔Ⅱ)從乙班[70,80),[80,90),[90,100]分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,

從中選三位同學(xué)發(fā)言,記來(lái)自[80,90)發(fā)言的人數(shù)為隨機(jī)變量x,求x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)應(yīng)屆畢業(yè)大學(xué)生自主創(chuàng)業(yè),國(guó)家對(duì)應(yīng)屆畢業(yè)大學(xué)生創(chuàng)業(yè)貸款有貼息優(yōu)惠政策,現(xiàn)有應(yīng)屆畢業(yè)大學(xué)生甲貸款開小型超市,初期投入為72萬(wàn)元,經(jīng)營(yíng)后每年的總收入為50萬(wàn)元,該公司第年需要付出的超市維護(hù)和工人工資等費(fèi)用為萬(wàn)元,已知為等差數(shù)列,相關(guān)信息如圖所示.

(Ⅰ)求;

(Ⅱ)該超市第幾年開始盈利?(即總收入減去成本及所有費(fèi)用之差為正值)

(Ⅲ)該超市經(jīng)營(yíng)多少年,其年平均獲利最大?最大值是多少?(年平均獲利

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的首項(xiàng)為1,且,數(shù)列滿足,對(duì)任意,都有.

(1)求數(shù)列、的通項(xiàng)公式;

(2)令,數(shù)列的前項(xiàng)和為.若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)為F1 , F2 , 離心率為 ,點(diǎn)A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長(zhǎng)等于4
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)圓O:x2+y2=4上任意一點(diǎn)P作橢圓C的兩條切線PM和PN與圓O交于點(diǎn)M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)游戲項(xiàng)目,要參與游戲,均需每次先付費(fèi)元(不返還),游戲甲有種結(jié)果:可能獲得元,可能獲得元,可能獲得元,這三種情況的概率分別為,;游戲乙有種結(jié)果:可能獲得元,可能獲得元,這兩種情況的概率均為.

(1)某人花元參與游戲甲兩次,用表示該人參加游戲甲的收益(收益=參與游戲獲得錢數(shù)-付費(fèi)錢數(shù)),求的概率分布及期望;

(2)用表示某人參加次游戲乙的收益,為任意正整數(shù),求證:的期望為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活水平的不斷提高,家庭理財(cái)越來(lái)越引起人們的重視.某一調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了5個(gè)家庭的月收入與月理財(cái)支出(單位:元)的情況,如下表所示:

月收入(千元)

8

10

9

7

11

月理財(cái)支出(千元)

(I)在下面的坐標(biāo)系中畫出這5組數(shù)據(jù)的散點(diǎn)圖;

(II)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(III)根據(jù)(II)的結(jié)果,預(yù)測(cè)當(dāng)一個(gè)家庭的月收入為元時(shí),月理財(cái)支出大約是多少元?

(附:回歸直線方程中,,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列{}的前n項(xiàng)和Sn=2-2

1)求數(shù)列{}的通項(xiàng)公式;

2)若bn=logSn=b1+b2++bn,對(duì)任意正整數(shù)nSn+n+m0恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案