已知橢圓
的左右焦點分別為
,過
且傾角為
的直線
交橢圓于
兩點,對以下結(jié)論:①
的周長為
;②原點到
的距離為
;③
;其中正確的結(jié)論有幾個
根據(jù)橢圓定義:
所以
的周長為
,①正確;
方程為
,原點的
的距離為
②正確;
由
消去
并整理得:
所以
③正確;故選A
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓C:
,它的離心率為
.直線
與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
⑴求橢圓C的方程;
⑵設
,
、
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點,連結(jié)
交橢圓
于另一點
,求直線
的斜率的取值范圍;
⑶在⑵的條件下,證明直線
與
軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓C:
與圓F:
的一個交點,且圓心F是橢圓的一個焦點,(1)求橢圓C的方程;(2)過F的直線交圓與P、Q兩點,連AP、AQ分別交橢圓與M、N點,試問直線MN是否過定點?若過定點,則求出定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)已知
、
是橢圓
的左、右焦點,
A是橢圓上位于第一象限內(nèi)的一點,點
B也在橢圓上,且滿足
為坐標原點),
,若橢圓的離心率等于
(1)求直線
AB的方程; (2)若
的面積等于
,求橢圓的方程;
(3)在(2)的條件下,橢圓上是否存在點
M使得
的面積等于
?若存在,求出點
M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
一條斜率為1的直線
與離心率e=
的橢圓C:
交于P、Q兩點,直線
與y軸交于點R,且
,求直線
和橢圓C的方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( 9分) 如圖,過橢圓
的左焦點
F任作一條與兩坐標軸都不垂直的弦
AB,若點
M在
x軸上,且使得
MF為△
AMB的一條內(nèi)角平分線,則稱點
M為該橢圓的“左特征點”.求橢圓
的“左特征點”
M的坐標;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知
+
=1的焦點F
1、F
2,在直線l:x+y-6=0上找一點M,求以F
1、F
2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知焦點在y軸的橢圓
的離心率為
,則m= ( )
查看答案和解析>>