(本題滿分14分)已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.
解:由,得F1(2,0),F(xiàn)2(-2,0)   (3分)
F1關(guān)于直線l的對稱點F1/(6,4)    (4分)
,連F1/F2交l于一點,即為所求的點M,∴2a=|MF1|+|MF2|=|F1/F2|=4,a=2(4分)
∴,又c=2,∴b2=16,             (4分)
故所求橢圓方程為.    (3分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左右焦點分別為,過且傾角為的直線交橢圓于兩點,對以下結(jié)論:①的周長為;②原點到的距離為;③;其中正確的結(jié)論有幾個
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點軸上,且焦距為,實軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點,使得為鈍角?若存在,求出點的橫坐標的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓 ()的一個焦點坐標為,且長軸長是短軸長的倍.
(1)求橢圓的方程;
(2)設(shè)為坐標原點,橢圓與直線相交于兩個不同的點,線段的中點為,若直線的斜率為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢,的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點的直線(斜率存在時)與橢圓交于、兩點,設(shè)為橢圓軸負半軸的交點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若點為圓的弦的中點,則直線的方程是_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)A、B是橢圓上不同的兩點,點C(-3,0),若A、B、C共線,則的取值范圍是   ▲   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一隧道的截面是一個半橢圓面(如圖所示),要保證車輛正常通行,車頂離隧道頂部至少要有米的距離,現(xiàn)有一貨車,車寬米,車高米.
(1)若此隧道為單向通行,經(jīng)測量隧道的跨度是米,則應(yīng)如何設(shè)計隧道才能保證此貨車正常通行?
(2)圓可以看作是長軸短軸相等的特殊橢圓,類比圓面積公式,
請你推測橢圓的面積公式.并問,當隧道為雙向通行(車道間的距離忽略不記)時,要使此貨車安全通過,應(yīng)如何設(shè)計隧道,才會使同等隧道長度下開鑿的土方量最。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左右焦點分別為,P為橢圓上一點,且
,則橢圓的離心率e=__________。

查看答案和解析>>

同步練習冊答案