一條斜率為1的直線與離心率e=的橢圓C:交于P、Q兩點(diǎn),直線與y軸交于點(diǎn)R,且,求直線和橢圓C的方程;
∵e=,∴,a2=2b2,則橢圓方程為=1,設(shè)l方程為:y=x+m,P(x1,y1),Q(x2,y2),
故有Δ=16m2-4×3(2m2-2b2)=8(-m2+3b2)>0
∴3b2>m2(*)
x1+x2=-m(1)
x1x2(m2-b2)(2)
·=-3得x1x2+y1y2=-3,
而y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,
所以2x1x2+m(x1+x2)+m2=-3⇒ (m2-b2)-m2+m2=-3,∴3m2-4b2=-9(3)
又R(0,m),=3,(-x1,m-y1)=3(x2,y2-m)
從而-x1=3x2(4)
由(1)(2)(4)得3m2=b2(5)
由(3)(5)解得b2=3,m=±1適合(*),
∴所求直線l方程為y=x+1或y=x-1;橢圓C的方程為=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)分別為F1、F2、P是橢圓在第一象限弧上一點(diǎn),并滿足,過P作傾斜角互補(bǔ)的兩條直線PA、PB分別交橢圓于A、B兩點(diǎn)
(1)求P點(diǎn)坐標(biāo);
(2)求證直線AB的斜率為定值;
(3)求△PAB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左右焦點(diǎn)分別為,過且傾角為的直線交橢圓于兩點(diǎn),對(duì)以下結(jié)論:①的周長(zhǎng)為;②原點(diǎn)到的距離為;③;其中正確的結(jié)論有幾個(gè)
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓 ()的一個(gè)焦點(diǎn)坐標(biāo)為,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個(gè)不同的點(diǎn),線段的中點(diǎn)為,若直線的斜率為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓經(jīng)過點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)軸上,離心率,
求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的離心率為,則的值為 ____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)A、B是橢圓上不同的兩點(diǎn),點(diǎn)C(-3,0),若A、B、C共線,則的取值范圍是   ▲   

查看答案和解析>>

同步練習(xí)冊(cè)答案