16.已知平行線3x+2y-6=0和6x+4y-3=0,則與這兩條平行線距離相等的點(diǎn)的軌跡是(  )
A.3x+2y-4=0B.3x+2y-5=0C.6x+4y-9=0D.12x+8y-15=0

分析 設(shè)出直線方程,利用平行線之間的距離求解即可.

解答 解:兩條平行直線3x+2y-6=0與6x+4y-3=0,
設(shè)與它們等距離的平行線的方程為:3x+2y+b=0,
由題意可得:$\frac{|-6-b|}{\sqrt{9+4}}$=$\frac{|-\frac{3}{2}-b|}{\sqrt{9+4}}$,解得b=-$\frac{15}{4}$.
與它們等距離的平行線的方程為:12x+8y-15=0.
故選:D.

點(diǎn)評(píng) 本題考查直線方程的求法,平行線之間的距離的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.解下列各不等式:
(1)|$\frac{1}{3}$x|≥7;       
(2)|10x|<$\frac{2}{5}$;       
(3)|x-6|<0.1      
(4)3≤|8-x|;
(5)|2x+5|<6;     
(6)|4x-1|≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知1g(x+2y)+1g(x-y)=1g2+1gx+lgy,求$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow{OA}$=(3,2),$\overrightarrow{OB}$=(-4,y)并且$\overrightarrow{OB}$⊥$\overrightarrow{OA}$,則|$\overrightarrow{OB}$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=a•2x+$\frac{1}{a{•2}^{x}}$為偶函數(shù),則a的值為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出平面可行域(如圖),若使目標(biāo)函數(shù)z=ax+y取最大值的最優(yōu)解有無(wú)窮多個(gè),則a=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知F1、F2是雙曲線$\frac{x^2}{16}-\frac{y^2}{9}$=1的焦點(diǎn),PQ是過(guò)焦點(diǎn)F1的弦,且PQ的傾斜角為60°,那么|PF2|+|QF2|-|PQ|的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如果以x為未知數(shù)的方程x2+2(m-1)x+3m2=11有兩個(gè)不相等的實(shí)數(shù)根,那么m的取值范圍是(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn):${a}^{lo{g}_{a}c-lo{g}_{a}b+lo{g}_{a}d}$-lnec+lg10d-logab•logbc•logc1(a,b,c,d∈R+,且都不等于1).

查看答案和解析>>

同步練習(xí)冊(cè)答案