【題目】已知直線過點(diǎn),圓:,直線與圓交于兩點(diǎn).
() 求直線的方程;
()求直線的斜率的取值范圍;
(Ⅲ)是否存在過點(diǎn)且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)見解析.
【解析】試題分析:()求出圓的圓心坐標(biāo),利用截距方程式求直線的方程;(Ⅱ)法1:聯(lián)立直線與圓的方程,通過判別式求解的范圍即可;法2:利用點(diǎn)到直線的距離公式與半徑的關(guān)系,轉(zhuǎn)化求解直線的斜率的取值范圍;(Ⅲ)求出直線的斜率,利用垂直關(guān)系,判斷是否存在直線方程.
試題解析:()設(shè)圓,圓心為,
故直線的方程為,即.
(Ⅱ)法1:直線的方程為,則
由得
由得
故.
法2:直線的方程為,即,
圓心為,圓的半徑為1則圓心到直線的距離
因?yàn)橹本與有交于兩點(diǎn),故,故
(Ⅲ)假設(shè)存在直線垂直平分于弦,此時(shí)直線過, ,則
,故的斜率,由()可知,不滿足條件
所以,不存在存在直線垂直于弦。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)坐標(biāo)是,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過作直線交橢圓于兩點(diǎn), 是橢圓的另一個(gè)焦點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足: , , .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項(xiàng)按原來(lái)順序構(gòu)成新數(shù)列,且,求證:存在無(wú)數(shù)個(gè)滿足條件的無(wú)窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線, ,則下列說(shuō)法正確的是( )
A. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
B. 把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線
D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長(zhǎng)度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線: (為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—5:不等式選講]
已知.
(1)若的解集為,求的值;
(2)若不等式恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)與的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動(dòng)點(diǎn),求點(diǎn)到的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx.
(1)若a=﹣1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值;
(3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com