經(jīng)過(guò)拋物線y2=2px(p>0)的焦點(diǎn)作一直線l交拋物線于A(x1,y1)、B(x2,y2),則的值為_(kāi)_______________.
-4
當(dāng)x1=x2=時(shí),y1y2=-p2,
=-4;
當(dāng)x1≠x2時(shí),設(shè)l:y=k(x-)(k≠0),
則x=.
代入y2=2px,得y2-y-p2=0,
∴y1+y2=,y1y2=-p2.
∴x1x2=(+)(+)=.
=-p2÷()=-4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線y2=2px(p>0)上一定點(diǎn)P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1)、B(x2,y2).
(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)F的距離;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),求的值,并證明直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)點(diǎn)的直線,使它與拋物線僅有一個(gè)交點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)的切線方程為為常數(shù)).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點(diǎn)為A,斜率為的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)時(shí),若P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求△AMN面積最大時(shí)直線l的方程,并求△AMN的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y2=2px與直線ax+y-4=0交于兩點(diǎn)A、B,其中點(diǎn)A的坐標(biāo)為(1,2),設(shè)拋物線的焦點(diǎn)為F,則|FA|+|FB|等于(    )
A.7                     B.3             C.6                 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)圓錐曲線焦點(diǎn)的直線與此圓錐曲線交于P1、P2兩點(diǎn),以P1P2為直徑的圓與此焦點(diǎn)對(duì)應(yīng)的準(zhǔn)線相切,則此圓錐曲線是(   )
A.橢圓B.雙曲線C.拋物線D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且截直線2x-y+1=0所得弦長(zhǎng)為,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線y2=2px(p>0)上三點(diǎn)的橫坐標(biāo)成等差數(shù)列,那么這三點(diǎn)與焦點(diǎn)F的距離的關(guān)系是 (    )
A.成等差數(shù)列
B.成等比數(shù)列
C.既成等差數(shù)列,又成等比數(shù)列
D.既不成等差數(shù)列,也不成等比數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案