【題目】某市一批養(yǎng)殖專業(yè)戶投資石金錢龜養(yǎng)殖業(yè),行業(yè)協(xié)會(huì)為了了解市場(chǎng)行情,對(duì)石金錢龜幼苖銷售價(jià)格進(jìn)行調(diào)查。2017年12月隨機(jī)抽取500戶銷售石金錢龜幼苖的平均價(jià)格,得到如下不完整的頻率分布統(tǒng)計(jì)表:

(Ⅰ)完成統(tǒng)計(jì)表。

(Ⅱ)為了向石金錢龜養(yǎng)殖戶提供更好的幼苖銷售參考,協(xié)會(huì)決定2018年1月份從第1,3,5組中用分層抽樣方法取出7戶出售幼龜價(jià)格跟蹤調(diào)查,求第1,3,5組1月份接受調(diào)查的戶數(shù)。

(Ⅲ)在(Ⅱ)的前提下,協(xié)會(huì)決定從選出的7個(gè)養(yǎng)殖戶中隨機(jī)抽取3戶總結(jié)銷售經(jīng)驗(yàn).為了鼓勵(lì)養(yǎng)殖戶支持調(diào)查工作,協(xié)會(huì)決定:發(fā)給第1組被抽到的每戶幸運(yùn)獎(jiǎng)獎(jiǎng)金210元,第3組被抽到的每戶幸運(yùn)獎(jiǎng)獎(jiǎng)金70元,第5組被抽到的每戶幸運(yùn)獎(jiǎng)獎(jiǎng)金140元.記發(fā)出的幸運(yùn)獎(jiǎng)總獎(jiǎng)金額為元,求的分布列和數(shù)學(xué)期望

【答案】(1)見解析(2) 1,3,5組接受調(diào)查的戶數(shù)分別為1,4,2(3)見解析

【解析】試題分析】(I)乘以頻率得到頻數(shù),由此填寫好表格.(II)利用分層抽樣各層的比例計(jì)算得每組抽取的人數(shù).(III)的所有可能取值為210,280,350,420,490.利用古典概型的計(jì)算公式計(jì)算出概率,并求出期望值.

試題解析

(Ⅰ)

(Ⅱ)按分層抽樣,可得第1組抽取的戶數(shù):,第3組抽取的戶數(shù):,第5組抽取的戶數(shù):.

因此,第1,3,5組接受調(diào)查的戶數(shù)分別為1,4,2

(Ⅲ)依題意,的所有可能取值為210,280,350,420,490,則

所以的分布列為:

所以的數(shù)學(xué)期望為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,底面,且,的中點(diǎn),上,且.

1)求證:平面平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)

(1)b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

(2)證明:b2>3a;

(3)f(x),f'(x)這兩個(gè)函數(shù)的所有極值之和不小于-,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

【答案】(I)見解析; (Ⅱ)見解析.

【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.

詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:) 與銷售件數(shù)的關(guān)系式為: .

乙公司一名推銷員的日工資 (單位: ) 與銷售件數(shù)的關(guān)系式為:

()記甲公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

記乙公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

120

128

144

160

0.2

0.3

0.4

0.1

∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.

點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:

第一步是判斷取值,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;

第二步是探求概率,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;

第三步是寫分布列,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;

第四步是求期望值,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值

型】解答
結(jié)束】
19

【題目】如圖,在四棱錐中,底面為菱形, 平面, , , 分別是, 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和導(dǎo)學(xué)案兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn)。為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖。記成績(jī)不低于70分者為成績(jī)優(yōu)良”。

Ⅰ)請(qǐng)大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;

Ⅱ)構(gòu)造一個(gè)教學(xué)方式與成績(jī)優(yōu)良列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

(附:,其中是樣本容量)

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線1(a0,b0)的右焦點(diǎn)為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車輛限行的態(tài)度,隨機(jī)抽查了人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

)完成被調(diào)查人員的頻率分布直方圖.

)若從年齡在,的被調(diào)查者中各隨機(jī)選取人進(jìn)行追蹤調(diào)查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校推廣新課改,在兩個(gè)程度接近的班進(jìn)行試驗(yàn),一班為新課改班級(jí),二班為非課改班級(jí),經(jīng)過一個(gè)學(xué)期的教學(xué)后對(duì)期末考試進(jìn)行分析評(píng)價(jià),規(guī)定:總分超過550(或等于550)為優(yōu)秀,550以下為非優(yōu)秀得到以下列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計(jì)

一班

35

13

二班

25

合計(jì)

90

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為推廣新課改與數(shù)學(xué)成績(jī)有關(guān)系?

參考數(shù)據(jù):

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

k

2.072

2.706

3.841

5.024

6.635

7.879

k2

查看答案和解析>>

同步練習(xí)冊(cè)答案