【題目】如圖,在四棱錐中,已知,,底面,且,,為的中點(diǎn),在上,且.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3).
【解析】試題分析:(1)由底面得,又得平面,由面面垂直的判定定理可得平面平面;(2)取的中點(diǎn),連接,則可證四邊形是平行四邊形,于是,由線面平行的判定定理得平面;(3)以三角形為棱錐的底面,則棱錐的高為,代入體積公式計(jì)算即可.
試題解析:(1)證明:∵ 底面,底面,故;
又,,因此平面,又平面,
因此平面平面.
(2)證明:取的中點(diǎn),連接,則,且,又,故.
又,,,又.
∴,,且,故四邊形為平行四邊形,
∴,又平面,平面,故平面.
(3)解:由底面,∴的長(zhǎng)就是三棱錐的高,.
又,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).
(1)求證:面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.40 B.0.30
C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的,均為有理數(shù)),為一無(wú)理數(shù)列(即對(duì)任意的,為無(wú)理數(shù)).
(1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式.
(2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為.
(3)已知,,對(duì)任意的,恒成立,試計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過(guò)點(diǎn),求的值;
②當(dāng)時(shí),若函數(shù)在上沒(méi)有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的極值點(diǎn),1和是函數(shù)的兩個(gè)不同零點(diǎn),且,求.
(2)若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線,分別交于,兩點(diǎn),交的準(zhǔn)線于,兩點(diǎn).
(1)若在線段上,是的中點(diǎn),證明:;
(2)若△的面積是△的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知函數(shù)()的最小正周
期為,
(Ⅰ)求的值;
(Ⅱ)將函數(shù)的圖像上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)
的圖像,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:直線與圓有兩個(gè)交點(diǎn);命題: .
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題, 為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com