【題目】某校為了了解學(xué)生對周末家庭作業(yè)量的態(tài)度,擬采用分層抽樣的方法分別從高一、高二、高三的高中生中隨機抽取一個容量為200的樣本進(jìn)行調(diào)查,已知從700名高一、高二學(xué)生中共抽取了140名學(xué)生,那么該校有高三學(xué)生名.

【答案】300
【解析】解:∵從700名高一、高二學(xué)生中共抽取了140名學(xué)生,
∴每個個體被抽到的概率是 =
高三年級有(200﹣140)÷ =300,
所以答案是:300.
【考點精析】通過靈活運用分層抽樣,掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a、b、c是常數(shù),則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先把正弦函數(shù)y=sinx圖象上所有的點向左平移 個長度單位,再把所得函數(shù)圖象上所有的點的縱坐標(biāo)縮短到原來的 倍(橫坐標(biāo)不變),再將所得函數(shù)圖象上所有的點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),則所得函數(shù)圖象的解析式是(
A.y=2sin( x+
B.y= sin(2x﹣
C.y=2sin( x﹣
D.y= sin(2x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)

(1)若x= ,求 的夾角θ;
(2)若x∈[﹣ ],f(x)=λ 的最大值為 ,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

收入x (萬元)

8.2

8.6

10.0

11.3

11.9

支出y (萬元)

6.2

7.5

8.0

8.5

9.8

據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計,該社區(qū)一戶收入為15萬元家庭年支出為(
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
①存在實數(shù)x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin( x+ )是偶函數(shù);
④函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù)y=cos2x的圖象.
其中正確命題的序號是(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是(

A.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向左平移 個單位
B.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向右平移 個單位
C.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的 ,然后再向右平移 個單位
D.將y=sinx的圖象上的點縱坐標(biāo)不變,橫坐標(biāo)變成原來的 ,然后再向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時,f(x)> 恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊答案