一船向正北航行,看見正西方向有相距20海里的兩個(gè)燈塔恰好與它在一條直線上繼續(xù)航行l(wèi)小時(shí)后,看見一燈塔在船的南偏西60°,另一燈塔在船的南偏西30°,則這只船的速度是每小時(shí)
10
3
10
3
海里.
分析:設(shè)該船的位置是從B到A,兩個(gè)燈塔位置分別為C、D,如圖所示.根據(jù)題意,得到△ACD中∠CAD=∠CDA=30°,從而CD=CA=20,在Rt△ABC中利用三角函數(shù)的定義算出AB=10
3
海里,即可得到該船的時(shí)速.
解答:解:如圖,設(shè)該船的位置是從B到A,兩個(gè)燈塔位置分別為C、D
依題意有AB⊥BD,∠BAD=60°,∠BAC=30°,
所以∠CAD=∠CDA=30°,
從而CD=CA=20,
在Rt△ABC中,得AB=ACcos30°=10
3

∴這艘船的速度是10
3
(海里/小時(shí)).
故答案為:10
3
點(diǎn)評(píng):本題給出實(shí)際應(yīng)用問題,求輪船的航行時(shí)速.著重考查了解直角三角形和方位角等概念,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一船向正北航行,看見正西方向有相距10海里的兩個(gè)燈塔恰好與它在一條直線上,繼續(xù)航行半小時(shí)后,看見一燈塔在船的南偏西60°,另一燈塔在船的南偏西75°,則這艘船的速度是每小時(shí)( 。
A、5海里
B、5
3
海里
C、10海里
D、10
3
海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一船向正北航行,看見正東方向有相距8海里的兩個(gè)燈塔恰好在一條直線上.繼續(xù)航行半小時(shí)后,看見一燈塔在船的南偏東60°,另一燈塔在船的南偏東75°,則這艘船每小時(shí)航行
 
海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一船向正北航行,看見正西方向有相距10海里的兩個(gè)燈塔恰好與它在一條直線上,繼續(xù)航行半小時(shí)后,看見一燈塔在船的南偏西60°,另一燈塔在船的南偏西75°,則這艘船是每小時(shí)航行
10海里
10海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一船向正北航行,看見正西方向有相距10海里的兩個(gè)燈塔恰好與它在一條直線上,繼續(xù)航行半小時(shí)后,看見一燈塔在船的南偏西60°,另一燈塔在船的南偏西75°,則這艘船的速度是每小時(shí)(  )

A.5海里                         B.5海里

C.10海里                        D.10海里

查看答案和解析>>

同步練習(xí)冊(cè)答案