【題目】已知點(diǎn)A(0,﹣2),橢圓E: 的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)過點(diǎn)A的動直線與橢圓E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時,求直線l的方程.
【答案】
(1)解:設(shè)F(c,0), ,解得 ,又 ,∴a=2,b=1,
∴橢圓E: ;
(2)解:當(dāng)l⊥x軸時,不合題意;
當(dāng)直線l斜率存在時,設(shè)直線l:y=kx﹣2,P(x1,y1),Q(x2,y2),
聯(lián)立 ,得(1+4k2)x2﹣16kx+12=0.
由△=16(4k2﹣3)>0,得 ,即 或k .
,
從而
= ,
又點(diǎn)O到直線PQ的距離 ,
∴△OPQ的面積 ,
設(shè) ,則t>0,
∴ ,當(dāng)且僅當(dāng)t=2,
即 時,等號成立,且△>0.
此時 .
【解析】(1)設(shè)出F,由直線AF的斜率為 求得c,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;(2)當(dāng)l⊥x軸時,不合題意;當(dāng)直線l斜率存在時,設(shè)直線l:y=kx﹣2,聯(lián)立直線方程和橢圓方程,由判別式大于0求得k的范圍,再由弦長公式求得|PQ|,由點(diǎn)到直線的距離公式求得O到l的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出k值,則直線方程可求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1= ,an+1=a ﹣an+1,則M= + +…+ 的整數(shù)部分是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某高中隨機(jī)選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:
身高x(cm) | 160 | 165 | 170 | 175 | 180 |
體重y(kg) | 63 | 66 | 70 | 72 | 74 |
根據(jù)如表可得回歸方程 =0.56x+ ,據(jù)此模型可預(yù)報(bào)身高為172cm的高一男生的體重為( )
A.70.12kg
B.70.29kg
C.70.55kg
D.71.05kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線
試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;
(2)若對于任意的時,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若函數(shù)與的圖像在點(diǎn)處有相同的切線,求的值;
(Ⅱ)當(dāng)時,恒成立,求整數(shù)的最大值;
(Ⅲ)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1 , A2 , …,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( )
A.i<6
B.i<7
C.i<8
D.i<9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N+)是首項(xiàng)為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng)m= 時,求Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com