求斜率為
3
4
,且與坐標軸所圍成的三角形的面積是6的直線方程.
考點:直線的截距式方程
專題:直線與圓
分析:設所求直線的方程為y=
3
4
x+b,由此求出縱截距y=b,橫截距x=-
4
3
b,由已知得
1
2
|b•(-
4
3
b)
|=6,由此能求出直線方程.
解答: 解:設所求直線的方程為y=
3
4
x+b,
令x=0,得y=b,
令y=0,得x=-
4
3
b,
由已知,得
1
2
|b•(-
4
3
b)
|=6,
2
3
b2=6,解得b=±3.
故所求的直線方程是y=
3
4
x±3,即3x-4y±12=0.
點評:本題考查直線方程的求法,是基礎題,解題時要認真審題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)
5
2i-1
的共軛復數(shù)是( 。
A、2i+1B、-1-2i
C、2i-1D、1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
,x∈R)的圖象的一個對稱中心的橫坐標為-
4
3
,它在y軸右側的第一個最大值點和第一個最小值點的坐標分別為(x0,3)和(x0+8,-3).
(1)求此函數(shù)的解析式f(x),并指出f(x)的對稱軸的方程;
(2)先把f(x)沿y軸向下平移一個單位,然后縱坐標不變,橫坐標縮短為原來的
π
4
,得到函數(shù)g(x),再把g(x)圖象上的所有點向右平移
π
3
個單位,得到函數(shù)h(x),若x∈[0,π]時,h(x)>
α
1+sinx
恒成立,求實數(shù)α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高二年級有男生1000人,女生800人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高二年級抽取了45名學生的測評結果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生                                    表二:女生
等級 優(yōu)秀 合格 尚待改進 等級 優(yōu)秀 合格 尚待改進
頻數(shù) 15 x     5 頻數(shù)  15   3    y
男生 女生 總計
優(yōu)秀 15 15 30
非優(yōu)秀
總計 45
(1)計算x,y的值;
(2)由表一表二中統(tǒng)計數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.
參考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)臨界值表:
P(x2≥k) 0.100 0.050 0.010
k 2.706 3.841 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,獲得單價xi(元)與銷量yi(件)的數(shù)據(jù)資料如下表:
單價x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(Ⅰ)求單價x對銷量y的回歸直線方程
y
=bx+a,(其中b=-20,a=
.
y
-b
.
x

(Ⅱ)預計在今后的銷售中,銷量與單價仍然服從(Ⅰ)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(注:利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,它們的對邊分別為a,b,c,且滿足a:b=
2
3
,c=2.
(Ⅰ)求A,B,C;
(Ⅱ)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
2
sin2
π
4
+x)-
2
(cos2x+1)(x∈R).

(1)用“五點法”作出函數(shù)f(x)在區(qū)間[
π
8
,
8
]上的簡圖;
(2)當x∈(
π
4
,
π
2
)時,恒有-3<f(x)-m<3成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某位老師對兩個班100名同學進行了是否經(jīng)常做家務的調查,數(shù)據(jù)如下表:
班別經(jīng)常做家務不經(jīng)常做家務總數(shù)
一班203252
二班252348
列總數(shù)4555100
如果隨機地問這兩個班中的一名學生,下面事件發(fā)生的概率是多少?
(1)經(jīng)常做家務;
(2)是二班的同學且不經(jīng)常做家務.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知直線l:
x=1+
1
2
t
y=
3
2
t
.曲線C1
x=cosθ
y=sinθ
,(θ為參數(shù)).
(I)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的
1
2
倍,縱坐標壓縮為原來的
3
2
倍,得到曲線C2,設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

同步練習冊答案