【題目】如圖,在邊長為的菱形中,,與交于點,將沿直線折起到的位置(點不與,兩點重合).
(1)求證:不論折起到何位置,都有平面;
(2)當(dāng)平面時,點是線段上的一個動點,若與平面所成的角為,求的值.
【答案】(1)詳見解析;(2)或.
【解析】
(1)由線面垂直的判定定理,即可證明平面;
(2)用空間向量的方法,以,,的方向分別為,,軸正方向建立空間直角坐標(biāo)系,設(shè),用表示出直線與平面所成角的余弦值,再由與平面所成的角為,即可求出結(jié)果.
(1)證明:因為四邊形是菱形,所以.
因為,點是的中點,
所以.
又因為平面,平面,,
所以平面.
(2)解:以,,的方向分別為,,軸正方向建立空間直角坐標(biāo)系如下圖所示.
易知,,,
則點,,,
所以,.
設(shè),則.
所以.
設(shè)平面的一個法向量為,則
由得解得
令,得平面的一個法向量為,
所以,
解得.
故所求的值為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是.
(1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;
(2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進貨量也在范圍內(nèi)取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30元.設(shè)該禮盒每天的需求量為盒,進貨量為盒,商店的日利潤為元.
(1)求商店的日利潤關(guān)于需求量的函數(shù)表達(dá)式;
(2)試計算進貨量為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對任意實數(shù),方程的解的個數(shù)為偶數(shù)(可以是0個,但不能是無數(shù)個),則稱為“偶的函數(shù)”.證明:
(1)任何多項式均不是偶的函數(shù);
(2)存在連續(xù)函數(shù)是偶的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為一個正整數(shù),三維空間內(nèi)的點集S滿足下述性質(zhì):
(1).空間內(nèi)不存在n個平面,使得點集S中的每個點至少在這n個平面中的一個平面上;
(2).對于每個點,均存在n個平面,使得中的每個點均至少在這n個平面中的一個平面上.
求點集S中點的個數(shù)的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校2011年到2019年參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù)(每位學(xué)生只能參加“北約”“華約”中的一種考試)可以通過以下表格反映出來,(為了方便計算,將2011年編號為1,2012年編號為2,依此類推)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)y | 2 | 3 | 5 | 4 | 5 | 7 | 8 | 10 | 10 |
(1)求這九年來,該校參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù)的平均數(shù)和方差;
(2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出y與x的線性回歸方程,并依此預(yù)測該校2020年參加“北約”“華約”考試而獲得加分的學(xué)生人數(shù).(最終結(jié)果精確至個位)
參考數(shù)據(jù):回歸直線的方程是,其中,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()經(jīng)過點,且兩個焦點,的坐標(biāo)依次為和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C上橫坐標(biāo)為3的點M到焦點F的距離為4.
(1)求拋物線C的方程;
(2)過拋物線C的焦點F且斜率為1的直線l交拋物線C于A、B兩點,求弦長|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com