【題目】2017年被稱為”新高考元年”,隨著上海、浙江兩地順利實施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進.遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學的高一新生將面臨從物理、化學、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自已將來高考“語數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學校理科班的200名學生中進行了“學生模找擬選科數(shù)據(jù)”調(diào)查,每個學生只能從表格中的20種課程組合選擇一種學習.模擬選課數(shù)據(jù)統(tǒng)計如下表 :

序號

1

2

3

4

5

6

7

組合學科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

人數(shù)

20人

5人

10人

10人

10人

15人

10人

序號

8

9

10

11

12

13

14

組合學科

物證歷

物政地

物歷地

化生政

化生歷

化生地

化政歷

人數(shù)

5人

0人

5人

40人

序號

15

16

17

18

19

20

組合學科

化政地

化歷地

生政歷

生政地

生歷地

政歷地

總計

人數(shù)

200人

為了解學生成績與學生模擬選課情況之間的關系,用分層抽樣的方法從這200名學生中抽取40人的樣本進行分析.

(1)從選擇學習物理且學習化學的學生中隨機抽取3人,求這3人中至少有2天要學習生物的概率;

(2)從選擇學習物理且學習化學的學生中隨機抽取3人,記這3人中要學習生物的人數(shù)為,要學習政治的人數(shù)為,設隨機變量,求隨機變量的分布列和數(shù)學期望.

【答案】(1);(2)答案見解析.

【解析】試題分析:(1)分別計算2人選生物和三人選生物的選法,由加法原理可得共34種,從而計算出其概率;(2)物化生組合有4人,的可能取值為0,1,2,3,物化政組合1人,的可能取值為0,1,的可能取值為-1,0,1,2,3.根據(jù)古典概型,分別求其概率即可得出分布列及期望.

試題解析:

(1)選擇學習物理且學習化學的學生有9人,其中學習生物的有4人從9人中選3人共有種選法,有2人選擇生物的選法共有種,有3人選擇生物的選法有種,所以至少有2人選擇生物的概率為.

(2)物化生組合有4人,的可能取值為0,1,2,3,物化政組合1人,的可能取值為0,1,的可能取值為-1,0,1,2,3.

;

;

;

;

的分布列

-1

0

1

2

3

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且(),.

(1)求證:是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.

(3)設四邊形的面積是,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4,坐標系與參數(shù)方程】

在直角坐標系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為

)求直線的普通方程與曲線C的直角坐標方程;

)若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是( )

A. 若命題,則命題

B. ”是“”的必要不充分條件

C. “若,則、中至少有一個不小于”的逆否命題是真命題

D. ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:關于x的方程x2﹣ax+4=0有實根;命題q:關于x的函數(shù)y=2x2+ax+4[3+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,頂點到直線的距離為,橢圓內(nèi)接四邊形(點在橢圓上)的對角線相交于點,且.

(1)求橢圓的標準方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDC,AEDCM,N分別是ADBE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

同步練習冊答案