設(shè)f(x)=ax2-2ax+lnx,已知函數(shù)f(x)有兩個極值點x1,x2,且x1x2

(1)求a的取值范圍;

(2)若存在x0∈[1+,2],使不等式f(x0)+ln(a+1)>m(a2-1)-(a+1)+2ln2對任意的a(取值范圍內(nèi)的值)恒成立,求實數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(αβ),則f(x)=0在(α,β)內(nèi)的實根的個數(shù)為

[  ]

A.0

B.1

C.2

D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(國標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

設(shè)f(x)=ax2bxc,若,問是否存在ab、cR,使得不等式x2f(x)≤2x2+2x對一切實數(shù)x都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(α<β),則f(x)=0在(α,β)內(nèi)的實根的個數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2bxc,當(dāng)|x|≤1時,總有|f(x)|≤1,求證:|f(2)|≤7.

查看答案和解析>>

同步練習(xí)冊答案