【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間的零件,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:
(Ⅰ)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你認為選擇不同的工藝與一等品產(chǎn)出率是否有關?
甲工藝 | 乙工藝 | 總計 | |
一等品 | |||
非一等品 | |||
總計 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:,其中.
(Ⅱ)以上述兩種工藝中各種產(chǎn)品的頻率作為相應產(chǎn)品產(chǎn)出的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,從一件產(chǎn)品的平均利潤考慮,你認為以后該工廠應該選擇哪種工藝生產(chǎn)該種零件?請說明理由.
【答案】(Ⅰ)沒有理由認為選擇不同的工藝與生產(chǎn)出一等品有關;(Ⅱ)選擇乙工藝
【解析】
(Ⅰ)先根據(jù)數(shù)據(jù)填表,再根據(jù)公式計算卡方,最后對照數(shù)據(jù)作判斷,(Ⅱ)根據(jù)數(shù)學期望公式計算平均數(shù),再比較大小,最后作判斷.
(Ⅰ)2×2列聯(lián)表如下
甲工藝 | 乙工藝 | 合計 | |
一等品 | 50 | 60 | 110 |
非一等品 | 50 | 40 | 90 |
合計 | 100 | 100 | 200 |
因為,
所以沒有理由認為選擇不同的工藝與生產(chǎn)出一等品有關.
(Ⅱ)甲工藝生產(chǎn)一等品、二等品、三等品的概率分別為:,,,
乙工藝生產(chǎn)一等品、二等品、三等品的概率分別為:,,,
因此甲生產(chǎn)一件產(chǎn)品的平均利潤為,
因此乙生產(chǎn)一件產(chǎn)品的平均利潤為,
因為,所以應該選擇乙工藝.
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是__________________.
①命題“若x2-3x+2=0,則x=1”的逆否命題為:若x≠1,則x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對于命題p:x∈R,使得x2+x+1<0,則非p:x∈R, 均有x2+x+1≥0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點,橢圓C的離心率為.,是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標準方程;
(2)若點M為的中點(O為坐標原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值;
(2)求這50名問卷評分數(shù)據(jù)的中位數(shù);
(3)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),已知,其中為正整數(shù),對于平面上任意一點,記為關于的對稱點,為關于的對稱點,…為關于的對稱點.
(1)求向量的坐標;
(2)對于任意偶數(shù),用表示向量的坐標;
(3)當點在函數(shù)圖像上移動時,點形成的是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當時,,求:函數(shù)在上的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為、,為橢圓C上一點,且的中點B在y軸上,.
(1)求橢圓C的標準方程:
(2)若直線交橢圓于P、Q兩點,若PQ的中點為N,O為原點,直線ON交直線于點M,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為,,焦距為6.
(1)求橢圓的方程.
(2)過橢圓左頂點的兩條斜率之積為的直線分別與橢圓交于點.試問直線是否過某定點?若過,求出該點的坐標;若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺變頻空調(diào)送往市內(nèi)某商場,現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運輸費用是400元,可裝空調(diào)20臺,每輛乙型貨車的運輸費用是300元,可裝空調(diào)10臺,若每輛車至多運一次,則企業(yè)所花的最少運費為( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com