【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分別五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意),其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為x,餐飲滿意度為y).
餐飲滿意度y 人數(shù) 住宿滿意度x | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 2 | 1 | 0 |
2 | 2 | 1 | 3 | 2 | 1 |
3 | 1 | 2 | 5 | 3 | 4 |
4 | 0 | 3 | 5 | 4 | 3 |
5 | 0 | 0 | 1 | 2 | 3 |
(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;
(3)為提高對(duì)酒店的滿意度,現(xiàn)從且的會(huì)員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
【答案】(1).(2).(3)
【解析】
(1)由表格數(shù)據(jù)計(jì)算出“住宿滿意度”分?jǐn)?shù),進(jìn)而可求平均數(shù).
(2)“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的平均數(shù),利用方程公式即可求解.
(3)符合條件的所有會(huì)員共6人,其中“住宿滿意度”為2的3人分別記為a,b,c“住宿滿意度”為3的3人分別記為d,e,f,從這6人中抽取2人,列舉出基本事件個(gè)數(shù),利用古典概型的概率計(jì)算公式即可求解.
(1).
(2)當(dāng)“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的平均數(shù)為,
其方差為.
(3)符合條件的所有會(huì)員共6人,其中“住宿滿意度”為2的3人分別記為a,b,c,“住宿滿意度”為3的3人分別記為d,e,f.
從這6人中抽取2人有如下情況,,,,,,,,,,,,,,,.共15種情況.
所以至少有1人的“住宿滿意度”為2的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求的最大值;
(2)如果函數(shù)在公共定義域D上,滿足,那么就稱為的“伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)是的“伴隨函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若,正實(shí)數(shù)滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線在第一象限的交點(diǎn)為,橢圓的左、右焦點(diǎn)分別為,其中也是拋物線的焦點(diǎn),且.
(1)求橢圓的方程;
(2)過的直線(不與軸重合)交橢圓于兩點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),直線分別交直線于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),;
若函數(shù)在上存在零點(diǎn),求a的取值范圍;
設(shè)函數(shù),,當(dāng)時(shí),若對(duì)任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在四棱錐中, 底面, ,, ,,點(diǎn)為棱的中點(diǎn).
(1)證明::
(2)求直線與平面所成角的正弦值;
(3)若為棱上一點(diǎn), 滿足, 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上三年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任交通死亡事故 | 上浮30% | |
某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三角形的邊長(zhǎng)為不相等的整數(shù),且最大邊長(zhǎng)為n,這些三角形的個(gè)數(shù)為an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在1,2,…,100中任取三個(gè)不同的整數(shù),求它們可以是一個(gè)三角形的三條邊長(zhǎng)的概率.
附:1+22+32+…+n2;1+23+33+…+n3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),g(x)=x2﹣1.
(1)求f(x)在點(diǎn)(0,f(0))處的切線方程.
(2)若h(x)=f(x)+g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),求證:x1f(x1)>x2f(x2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com