已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若時,求的取值范圍;

;⑵.

解析試題分析:⑴先求出指數(shù)的取值區(qū)間,然后根據(jù)指數(shù)函數(shù)的性質(zhì)對進行討論,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,與最值結(jié)合即能解出參數(shù)的值;⑵根據(jù)參數(shù)的取值集合先確定參數(shù)的具體值,代入不等式根據(jù)指數(shù)函數(shù)的單調(diào)性解不等式即可.
試題解析:(1)因為,∴值域為,即,   2分
,函數(shù)上單調(diào)遞增,
所以,,
,                            .4分
,函數(shù)上單調(diào)遞減,
所以,
,                             .6分
所求,的值為;                       7分
(2)由(1)可知,                           ..8分
,得,
解得.                               .12分
考點:指數(shù)型復合函數(shù)的性質(zhì)及應用,不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,某生態(tài)園欲把一塊四邊形地辟為水果園,其中, ,.若經(jīng)過上一點上一點鋪設一條道路,且將四邊形分成面積相等的兩部分,設

(1)求的關系式;
(2)如果是灌溉水管的位置,為了省錢,希望它最短,求的長的最小值;
(3)如果是參觀路線,希望它最長,那么的位置在哪里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/每小時)的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設a為實數(shù),記函數(shù)的最大值為
(1)設t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t) ;
(2)求 ;
(3)試求滿足的所有實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定.大橋上的車距與車速和車長的關系滿足:為正的常數(shù)),假定車身長為,當車速為時,車距為2.66個車身長.
寫出車距關于車速的函數(shù)關系式;
應規(guī)定怎樣的車速,才能使大橋上每小時通過的車輛最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)當時,求該函數(shù)的值域;
(2)若對于恒成立,求有取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

國家助學貸款是由財政貼息的信用貸款(即無利息貸款),旨在幫助高校家庭經(jīng)濟困難學生支付在校學習期間所需的學費、住宿費及生活費.每一年度申請總額不超過6000元.某大學2013屆畢業(yè)生小王在本科期間共申請了24000元助學貸款,并承諾在畢業(yè)后年內(nèi)(按36個月計)全部還清.簽約的單位提供的工資標準為第一年內(nèi)每月1500元,第個月開始,每月工資比前一個月增加直到4000元.小王計劃前12個月每個月還款額為500,第13個月開始,每月還款額比前一個月多元.
(1)假設小王在第個月還清貸款(),試用表示小王第)個月的還款額
(2)當時,小王將在第幾個月還清最后一筆貸款?
(3)在(2)的條件下,他還清最后一筆貸款的那個月工資的余額是否能滿足此月元的基本生活費?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ) 若直線y=kx+1與f (x)的反函數(shù)的圖像相切, 求實數(shù)k的值;
(Ⅱ) 設x>0, 討論曲線y=f (x) 與曲線 公共點的個數(shù).
(Ⅲ) 設a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

同步練習冊答案