【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
【答案】(1);(2)證明見解析;(3)答案見解析.
【解析】
(1)由題意可得,,據(jù)此確定離心率即可;
(2)由題意可得.分類討論和兩種情況證明直線與橢圓相切即可;
(3)設(shè),,當(dāng)時(shí),易得.當(dāng)時(shí),聯(lián)立直線方程與橢圓方程可得,結(jié)合韋達(dá)定理和平面向量的數(shù)量積運(yùn)算法則計(jì)算可得.據(jù)此即可證得為定值.
(1)由題意,,
所以離心率,左焦點(diǎn).
(2)由題知,,即.
當(dāng)時(shí)直線方程為或,直線與橢圓相切.
當(dāng)時(shí),由得,
即
所以
故直線與橢圓相切.
(3)設(shè),,
當(dāng)時(shí),,,,
,
所以,即.
當(dāng)時(shí),由得,
則,,
.
因?yàn)?/span>
.
所以,即.
故為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,點(diǎn)在拋物線上.
(1)求的邊所在的直線方程;
(2)求的面積最小值,并求出此時(shí)點(diǎn)的坐標(biāo);
(3)若為線段上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓:有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;
(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.
(1)求證:平面;
(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百一十五里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還其大意為:“有一個(gè)人走315里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了 6天后到達(dá)目的地. ”則該人最后一天走的路程為( )
A.20里B.10里C.5 里D.2.5 里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺(tái)共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓關(guān)于直線對(duì)稱.
(1)求圓的方程;
(2)過點(diǎn)作兩條相異直線分別與圓相交于、兩點(diǎn),若直線、的傾斜角互補(bǔ),問直線與直線是否垂直?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形沿對(duì)角線折成直二面角,下列結(jié)論:①異面直線與所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫出你認(rèn)為正確的所有結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com