解不等式:|x2-1|<x2+1.
考點(diǎn):絕對(duì)值不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:原不等式等價(jià)于①
x2-1>0
x2-1<x2+1
,或②
x2-1≤0
1-x2x2+1
,最后把①②的解集取并集.
解答: 解:原不等式等價(jià)于①
x2-1>0
x2-1<x2+1
,或②
x2-1≤0
1-x2x2+1
,
化簡(jiǎn)得:
x2>1
-1<1
x2≤1
x2>2
,
解得:x<-1或x>1或Ω
即:x<-1或x>1
故原不等式的解集是(-∞,-1)∪(1,∞).
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,一元二次不等式組的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過A(-4,0)、B(0,-3)兩點(diǎn)作兩條平行線,求分別滿足下列條件的方程:
(1)兩平行線間距離為4;
(2)這兩條直線各繞A,B旋轉(zhuǎn),使它們之間的距離取最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=1-cosx的最大值和最小值,并寫出取最值時(shí)的x的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x
x+1
,且a1=
1
2
,an+1=f(an),其中n=1,2,3,….
(1)計(jì)算a2,a3的值;
(2)設(shè)bn=
1-an
an
,求證:數(shù)列{bn}為等比數(shù)列;
(3)求證:
1
2
≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y-5≤0
x-y-2≤0
x≥0
,求目標(biāo)函數(shù)z=2x+3y+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x≥a},集合B={x|
1
x-3
<0},命題p:1∈A,命題q:a∈B,
(1)若集合¬A是集合B的充分條件,求實(shí)數(shù)a的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-4≤x≤2},B={x|-1<x≤3},P={x|x≤0,或x≥
5
2
},求A∪B,A∩P,(A∩B)∪P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an≠2,an+1=
5an-8
2an-3
,a1=3.
(1)證明:數(shù)列{
1
an-2
}是等差數(shù)列.
(2)設(shè)bn=an-2,數(shù)列{bnbn+1}的前n項(xiàng)和為Sn,求使(2n+1)•2n+2•Sn>(2n-3)•2n+1+192成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2弧度的圓心角所在圓的半徑為2,則此圓心角所在的扇形面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案