設(shè)變量x,y滿足約束條件
x+2y-5≤0
x-y-2≤0
x≥0
,求目標(biāo)函數(shù)z=2x+3y+1的最大值.
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:確定不等式表示的平面區(qū)域,明確目標(biāo)函數(shù)的幾何意義,即可求得最大值.
解答: 解:不等式
x+2y-5≤0
x-y-2≤0
x≥0
表示的平面區(qū)域如圖所示:

目標(biāo)函數(shù)z=2x+3y+1,即y=-
2
3
x+
z
3
+1,則直線過點C時,縱截距最大,
此時,由
x+2y-5=0
x-y-2=0
,可得x=3,y=1
∴目標(biāo)函數(shù)z=2x+3y+1的最大值為2×3+3×1+1=10,
目標(biāo)函數(shù)z=2x+3y+1的最大值為:10
點評:本題考查線性規(guī)劃知識,考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2-kx-8,x∈[1,5].
(1)當(dāng)k=12時,求f(x)的值域;
(2)若函數(shù)f(x)具有單調(diào)性,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7月份,有一款新服裝投入某市場銷售.7月1日該款服裝僅銷售出3件,7月2日售出6件,7月3日售出9件,7月4日售出12件,爾后,每天售出的件數(shù)分別遞增3件直到日銷售量達(dá)到最大(只有1天)后,每天銷售的件數(shù)開始下降,分別遞減2件,到7月31日剛好售出3件.
(1)問7月幾號該款服裝銷售件數(shù)最多?其最大值是多少?
(2)按規(guī)律,當(dāng)該商場銷售此服裝達(dá)到200件時,社會上就開始流行,而日銷售量連續(xù)下降并低于20件時,則不再流行,問該款服裝在社會上流行幾天?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
4x-a
在(1,+∞)上單調(diào)遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|x2-1|<x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P任作斜率為k1,k2的兩條直線,分別交拋物線C于A(x1,y1),B(x2,y2)兩點(P,A,B三點互不相同),
(1)求拋物線C的焦點坐標(biāo)和準(zhǔn)線方程;
(2)若點P為拋物線C的頂點,且直線AB過點(0,
1
a
),求證:k1•k2是一個定值;
(3)若點P的坐標(biāo)為(1,-1),且k1+k2=0,求∠PAB為鈍角時點A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)若m(x)=f(x)-g(x),求m(x)的最小值.
(Ⅱ)若f(x)≥ag(x)恒成立,求實數(shù)a的值;
(Ⅲ)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個極值點x1、x2(x1<x2),求實數(shù)m的取值范圍,并證明F(x2)>-
3+4ln2
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x+
2
x
)(1-x)4的展開式中,x2項的系數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案