【題目】在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是 ,則sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

【答案】B
【解析】解:依題意可知拼圖中的每個(gè)直角三角形的長直角邊為cosθ,短直角邊為sinθ,
小正方形的邊長為cosθ﹣sinθ,
∵小正方形的面積是 ,
∴(cosθ﹣sinθ)2=
又θ為直角三角形中較小的銳角,
∴cosθ>sinθ
∴cosθ﹣sinθ=
又∵(cosθ﹣sinθ)2=1﹣2sinθcosθ=
∴2cosθsinθ=
∴1+2sinθcosθ=
即(cosθ+sinθ)2=
∴cosθ+sinθ=
∴sin2θ﹣cos2θ=(cosθ+sinθ)(sinθ﹣cosθ)=﹣ =﹣
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ ].
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體

求證:(ⅰ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓

1)若圓軸相切,求圓的方程;

2)求圓心的軌跡方程;

3)已知,圓軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓 相交于兩點(diǎn)問:是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,平面平面分別是的中點(diǎn).

求證:(I)底面

(II)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)購為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為, 為坐標(biāo)原點(diǎn),四邊形的面積為,且該四邊形內(nèi)切圓的方程為

(Ⅰ)求橢圓的方程;

(Ⅱ)若、是橢圓上的兩個(gè)不同的動(dòng)點(diǎn),直線的斜率之積等于,試探求的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次愛心捐款活動(dòng)中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟(jì)收入有關(guān),隨機(jī)調(diào)査了某地區(qū)的個(gè)捐款居民每月平均的經(jīng)濟(jì)收入. 在捐款超過元的居民中,每月平均的經(jīng)濟(jì)收入沒有達(dá)到元的有個(gè),達(dá)到元的有個(gè);在捐款不超過元的居民中,每月平均的經(jīng)濟(jì)收入沒有達(dá)到元的有個(gè).

(1)在下圖表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否超過元和居民毎月平均的經(jīng)濟(jì)收入是否達(dá)到元有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量居民中,采用隨機(jī)抽樣方法毎次抽取個(gè)居民,共抽取次,記被抽取的個(gè)居民中經(jīng)濟(jì)收入達(dá)到元的人數(shù)為,求和期望的值.

每月平均經(jīng)濟(jì)收入達(dá)到

每月平均經(jīng)濟(jì)收入沒有達(dá)到

合計(jì)

捐款超過

捐款不超過

合計(jì)

附: ,其中

查看答案和解析>>

同步練習(xí)冊答案