【題目】已知函數(shù).
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)時(shí),不等式在上恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)求出導(dǎo)函數(shù),分和兩種情況討論,判斷導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性,求解函數(shù)的極值即可;
(2)當(dāng)時(shí),由題即在上恒成立,令且,對(duì)分和兩種情況討論,判斷函數(shù)的單調(diào)性求解函數(shù)的最值,推出結(jié)果.求解的取值范圍.
(1),.
①當(dāng)時(shí),,所以在上單調(diào)遞增,無(wú)極值;
②當(dāng)時(shí),令,得.
當(dāng)時(shí),;當(dāng)時(shí),.
所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
此時(shí),函數(shù)只有一個(gè)極值點(diǎn).
綜上所述,當(dāng)時(shí),函數(shù)在上無(wú)極值點(diǎn);
當(dāng)時(shí),函數(shù)在上只有一個(gè)極值點(diǎn);
(2)當(dāng)時(shí),由題即在上恒成立,
令且,
則,
令,
則且.
(ⅰ)當(dāng)時(shí),即時(shí),
由于,,而,
所以,故函數(shù)在上單調(diào)遞增,所以,
即,故函數(shù)在上單調(diào)遞增,所以,
即在上恒成立,故符合題意;
(ⅱ)當(dāng)時(shí),即時(shí),
由于在上單調(diào)遞增,
令,因?yàn)?/span>,
故在上存在唯一的,使,
因此,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,所以,
即,函數(shù)在上單調(diào)遞減,故,與題意不符.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,邊長(zhǎng)為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點(diǎn)E,使得平面PBC?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,,,百米,百米.該區(qū)域內(nèi)原有道路,現(xiàn)新修一條直道(寬度忽略不計(jì)),點(diǎn)在道路上(異于,兩點(diǎn)),,.
(1)用表示直道的長(zhǎng)度;
(2)計(jì)劃在區(qū)域內(nèi)修建健身廣場(chǎng),在區(qū)域內(nèi)種植花草.已知修建健身廣場(chǎng)的成本為每平方百米4萬(wàn)元,種植花草的成本為每平方百米2萬(wàn)元,新建道路的成本為每百米4萬(wàn)元,求以上三項(xiàng)費(fèi)用總和的最小值(單位:萬(wàn)元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞增,求的取值范圍;
(2)證明:當(dāng)時(shí),不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,4),拋物線(xiàn)C:x2=2py(0<p<4)的準(zhǔn)線(xiàn)為1,點(diǎn)P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,則拋物線(xiàn)方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),,動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線(xiàn)SP,TP的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)點(diǎn)B為軌跡E與y軸正半軸的交點(diǎn),是否存在斜率為直線(xiàn)l,使得l交軌跡E于M,N兩點(diǎn),且恰是的重心?若存在,求l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:,過(guò)點(diǎn)且互相垂直的兩條動(dòng)直線(xiàn),與拋物線(xiàn)C分別交于P,Q和M,N.
(1)求四邊形面積的取值范圍;
(2)記線(xiàn)段和的中點(diǎn)分別為E,F,求證:直線(xiàn)恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的公差為,前n項(xiàng)和為,且滿(mǎn)足____________.(從①);②成等比數(shù)列;③,這三個(gè)條件中任選兩個(gè)補(bǔ)充到題干中的橫線(xiàn)位置,并根據(jù)你的選擇解決問(wèn)題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com