【題目】某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數(shù)為________.

【答案】

【解析】

對新加入的學生所扮演的角色進行分類討論,分析各種情況下個學生所扮演的角色的分組,綜合可得出結論.

依題意,名學生分成組,則一定是人組和人組.

①若新加入的學生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是士兵,由對稱性可知也可以是司令;

②若新加入的學生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學生可以是排長,由對稱性可知也可以是軍長;

③若新加入的學生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學生可以是連長,由對稱性可知也可以是師長;

④若新加入的學生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是營長,由對稱性可知也可以是旅長;

⑤若新加入的學生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學生可以是團長.

綜上所述,新加入學生可以扮演種角色.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加現(xiàn)對一批該設備進行調查,得到這批設備自購入使用之日起,前5年平均每臺設備每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

1.1

1.6

2

2.5

2.8

1)在這5年中隨機抽取兩年,求平均每臺設備每年的維護費用至少有1年多于2萬元的概率;

2)求關于的線性回歸方程.若該設備的價格是每臺16萬元,你認為應該使用滿五年換一次設備,還是應該使用滿八年換一次設備?請說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

1)若曲線在點處的切線平行于軸,求的值;

2)求函數(shù)的極值;

3)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四邊形中,,;如圖,將沿邊折起,連結,使,求證:

1)平面平面;

2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在斜三棱柱中,是邊長為2的正三角形,側面為菱形,且,,點OAC中點.

1)求證:平面ABC;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網站月促銷費用(萬元)和產品銷量(萬件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷費用

2

3

6

10

13

21

15

18

產品銷量

1

1

2

3

3.5

5

4

4.5

(1)根據(jù)數(shù)據(jù)可知具有線性相關關系,請建立關于的回歸方程(系數(shù)精確到);

(2)已知月份該購物網站為慶祝成立周年,特定制獎勵制度:用(單位:件)表示日銷量,若,則每位員工每日獎勵元;若,每位員工每日獎勵元;若,則每位員工每日獎勵元.現(xiàn)已知該網站月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約為多少元.(當月獎勵金額總數(shù)精確到百分位)

參考數(shù)據(jù):,其中分別為第個月的促銷費用和產品銷量,.

參考公式:①對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計分別為,.

②若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,曲線極坐標方程為,直線與曲線交于、兩點.

1)求直線的普通方程以及曲線的直角坐標方程;

2)若直線上有定點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,∠ACB90°,ACCBC1C1,MN分別是AB,A1C的中點.

1)求證:直線MN⊥平面ACB1

2)求點C1到平面B1MC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為比賽成績是否優(yōu)秀與性別有關?

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案