若cosA=
1
3
,則
3sinA-tanA
4sinA+2tanA
=( 。
A、
4
7
B、
1
3
C、
1
2
D、0
考點:三角函數(shù)的化簡求值
專題:計算題,三角函數(shù)的求值
分析:由cosA=
1
3
,則
3sinA-tanA
4sinA+2tanA
切化弦化簡后得0.
解答: 解:∵cosA=
1
3
,
∴則
3sinA-tanA
4sinA+2tanA
=
3sinA-
sinA
cosA
4sinA+2tanA
=
3sinA-3sinA
4sinA+2tanA
=0.
故選:D.
點評:本題主要考查了三角函數(shù)的化簡求值,考查了同角的三角函數(shù)的關系,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin
x
2
cos
x
2
-cos2
x
2
-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)y=sinx經(jīng)過如何變換得到y(tǒng)=f(x);
(Ⅲ)若f(α)=
3
2
10
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(α+
π
4
)=
3
3
,則cos(2α-
π
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A′B′C′D′中,O1,O2,O3分別是AC,AB′,AD′的中點,以{
AO
1,
AO
2
AO
3}為基底,
AC
=
xAO1
+
yAO2
+
zAO3
,則x,y,z的值是( 。
A、x=y=z=1
B、x=y=z=
1
2
C、x=y=z=
2
2
D、x=y=z=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個向量
a
b
,
c
不共面,且
p
=
a
+
b
-
c
,
q
=2
a
-3
b
-5
c
r
=-7
a
+18
b
+22
c
.試問向量
p
,
q
,
r
是否共面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A,∠B,∠C的對邊分別是a、b、c,且(2a-c)cosB=bcosC,求:
(1)∠B;
(2)當a=3、c=2時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x)且x∈[0,1]時,f(x)=x,則方程f(x)=log3|x|的零點個數(shù)是(  )
A、2個B、3個C、4個D、6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐曲線x2+my2=1的一個焦點坐標為F(
2
|m|
,0),則該圓錐曲線的離心率為( 。
A、
2
3
3
B、
3
3
5
C、
5
D、
2
3
3
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x-a|
+x2,(常數(shù)a∈R).
(1)根據(jù)a的不同取值,討論f(x)的奇偶性,并說明理由;
(2)設a=0,且t是正實數(shù),函數(shù)f(x)在區(qū)間[t,+∞) 上單調(diào)遞增,試根據(jù)函數(shù)單調(diào)性的定義求出t的取值范圍.

查看答案和解析>>

同步練習冊答案