【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
【答案】
【解析】解:作BE⊥AD于E,連接CE,則AD⊥平面BEC,所以CE⊥AD,
由題設(shè),B與C都是在以AD為焦點(diǎn)的橢球上,且BE、CE都垂直于焦距AD,
AB+BD=AC+CD=2a,顯然△ABD≌△ACD,所以BE=CE.
取BC中點(diǎn)F,∴EF⊥BC,EF⊥AD,要求四面體ABCD的體積的最大值,因?yàn)锳D是定值,只需三角形EBC的面積最大,因?yàn)锽C是定值,所以只需EF最大即可,
當(dāng)△ABD是等腰直角三角形時(shí)幾何體的體積最大,∵AB+BD=AC+CD=2a,
∴AB=a,所以EB= ,EF= ,
所以幾何體的體積為: × = .
所以答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2),,使得不等式成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求b的值;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(3)解關(guān)于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷(xiāo)售均價(jià)走勢(shì)如圖所示,3月至7月房?jī)r(jià)上漲過(guò)快,政府從8月采取宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(jià)(萬(wàn)元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸直線方程;
(2)若政府不調(diào)控,按照3月份至7月份房?jī)r(jià)的變化趨勢(shì)預(yù)測(cè)12月份該市新建住宅的銷(xiāo)售均價(jià).
參考數(shù)據(jù):,,;
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海事救援船對(duì)一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點(diǎn),以正北方向?yàn)閥軸正方向建立平面直角坐標(biāo)系(以1海里為單位長(zhǎng)度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):
①失事船的移動(dòng)路徑可視為拋物線 ;
②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時(shí)后,失事船所在位置的橫坐標(biāo)為7t
(1)當(dāng)t=0.5時(shí),寫(xiě)出失事船所在位置P的縱坐標(biāo),若此時(shí)兩船恰好會(huì)合,求救援船速度的大小和方向.
(2)問(wèn)救援船的時(shí)速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全一直是人們關(guān)心和重視的問(wèn)題,學(xué)校的食品安全更是社會(huì)關(guān)注的焦點(diǎn).某中學(xué)為了加強(qiáng)食品安全教育,隨機(jī)詢問(wèn)了36名不同性別的中學(xué)生在購(gòu)買(mǎi)食品時(shí)是否看保質(zhì)期,得到如下“性別”與“是否看保質(zhì)期”的列聯(lián)表:
男 | 女 | 總計(jì) | |
看保質(zhì)期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
總計(jì) |
(1)請(qǐng)將列聯(lián)表填寫(xiě)完整,并根據(jù)所填的列聯(lián)表判斷,能否有的把握認(rèn)為“性別”與“是否看保質(zhì)期”有關(guān)?
(2)從被詢問(wèn)的14名不看保質(zhì)期的中學(xué)生中,隨機(jī)抽取3名,求抽到女生人數(shù)的分布列和數(shù)學(xué)期望.
附:,().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2007全運(yùn)會(huì)上兩名射擊運(yùn)動(dòng)員甲、乙在比賽中打出如下成績(jī):
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個(gè)成績(jī);并根據(jù)莖葉圖分析甲、乙兩人成績(jī);
(2)分別計(jì)算兩個(gè)樣本的平均數(shù)和標(biāo)準(zhǔn)差,并根據(jù)計(jì)算結(jié)果估計(jì)哪位運(yùn)動(dòng)員的成績(jī)比較穩(wěn)定.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com