已知函數(shù)f(x)=ax+
1x
(a>0)

(1)當(dāng)a=1時(shí),利用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在(0,1]內(nèi)是單調(diào)減函數(shù);
(2)當(dāng)x∈(0,+∞)時(shí)f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.
分析:(1)先任意取兩個(gè)變量,且界定其大小,再作差變形看符號(hào),注意變形到等價(jià)且到位.
(2)先化簡不等式,f(x)>0,再由分式不等式等價(jià)轉(zhuǎn)化整式不等式ax2-x+1≥0恒成立,然后采用分離常數(shù)法求實(shí)數(shù)a的取值范圍即可.
解答:解:(1)任意取x1,x2∈(0,1]且x1<x2
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)(1-
1
x1x2
)=(x1-x2)
x1x2-1
x1x2

因?yàn)閤1<x2,所以x1-x2<0
0<x1x2<1,所以x1x2-1<0
所以f(x1)-f(x2)>0,
即f(x1)>f(x2),
所以f(x)在( 0,1]上是單調(diào)減函數(shù).
(2)∵x∈(0,+∞),f(x)=ax+
1
x
ax2+1
x
≥1
恒成立,
等價(jià)于當(dāng)x∈(0,+∞)時(shí)ax2-x+1≥0恒成立即可,
∴a≥
x-1
x2
在x∈(0,+∞)恒成立 又
1
x
∈(0,+∞),
令g(x)=
x-1
x2
=-(
1
x
2+
1
x
=-(
1
x
-
1
2
2+
1
4
1
4

∴a≥
1
4

故a的取值范圍[
1
4
,+∞).
點(diǎn)評(píng):本題對(duì)學(xué)生的程度要求比較高,有一定的難度,主要考查利用函數(shù)單調(diào)性求函數(shù)的最值,及不等式的等價(jià)轉(zhuǎn)化思想,考查運(yùn)算能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案