【題目】根據調查,某學校開設了“街舞”、“圍棋”、“武術”三個社團,三個社團參加的人數如下表所示:
社團 | 街舞 | 圍棋 | 武術 |
人數 | 320 | 240 | 200 |
為調查社團開展情況,學校社團管理部采用分層抽樣的方法從中抽取一個容量為n的樣本,已知從“圍棋”社團抽取的同學比從“街舞”社團抽取的同學少2人.
(1)求三個社團分別抽取了多少同學;
(2)若從“圍棋”社團抽取的同學中選出2人擔任該社團活動監(jiān)督的職務,已知“圍棋”社團被抽取的同學中有2名女生,求至少有1名女同學被選為監(jiān)督職務的概率。
【答案】(1)8,6,5(2).
【解析】
(1)設抽樣比為x,則由分層抽樣可知,“街舞”、“圍棋”、“武術”三個社團抽取的人數分別為320x、240x、200x.由題意列出方程,能求出“街舞”、“圍棋”、“武術”三個社團抽取的人數.
(2)從“圍棋”社團抽取了6人,其中2位女生記為A,B,4位男生記為C,D,E,F,利用列舉法能求出從這6位同學中任選2人,至少有1名女生被選中的概率.
(1)設抽樣比為x,則由分層抽樣可知,“街舞”、“圍棋”、“武術”三個社團抽取的人數分別為320x、240x、200x.
則由題意得320x﹣240x=2,解得x.
故“街舞”、“圍棋”、“武術”三個社團抽取的人數分別為3208、2406、2005.
(2) 由(1)知,從“圍棋”社團抽取的同學為6人,
其中2位女生記為;4位男生記為;
從中選出2人擔任該社團活動監(jiān)督的職務有15種不同的結果,
至少有1名女同學被選為監(jiān)督職務有9種不同的結果,
所以至少有1名女同學被選為監(jiān)督職務的概率.
科目:高中數學 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關程度,隨機調查了100位成人市民,統(tǒng)計數據如下:
不小于40歲 | 小于40歲 | 合計 | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計 | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進行深入調研,其中不小于40歲的人應抽多少人?
②從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關.
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某景區(qū)內有兩條道路、,現計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,,.若綠化區(qū)域改造成本為萬元,新建道路成本為萬元.
(1)①設,寫出該計劃所需總費用的表達式,并寫出的范圍;
②設,寫出該計劃所需總費用的表達式,并寫出的范圍;
(2)從上面兩個函數關系中任選一個,求點在何處時改造計劃的總費用最小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機模擬的方法估計事件發(fā)生的概率.利用電腦隨機產生整數0,1,2,3四個隨機數,分別代表“瓷、都、文、明”這四個字,以每三個隨機數為一組,表示取卡片三次的結果,經隨機模擬產生了以下18組隨機數:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學為研究“網絡游戲對當代青少年的影響”作了一次調查,共調查了50名同學,其中男生26人,有8人不喜歡玩游戲,而調查的女生中有9人喜歡玩游戲.
(1)根據以上數據完成2×2的列聯(lián)表;
(2)根據以上數據,在犯錯誤的概率不超過0.025的前提下,能否認為“喜歡玩電腦游戲與性別有關系”?
男生 | 女生 | 總計 | |
喜歡玩游戲 | |||
不喜歡玩游戲 | |||
總計 |
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現連勝,則判定獲勝局數多者贏得比賽,假設每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結果相互獨立.
求甲在4局以內(含4局)贏得比賽的概率;
記為比賽決出勝負時的總局數,求的分布列和均值(數學期望).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】首屆中國國際進口博覽會期間,甲、乙、丙三家中國企業(yè)都有意向購買同一種型號的機床設備,他們購買該機床設備的概率分別為,且三家企業(yè)的購買結果相互之間沒有影響,則三家企業(yè)中恰有1家購買該機床設備的概率是
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com