A. | 在$[\frac{π}{6},\frac{2π}{3}]$上是增函數(shù) | |
B. | 圖象關(guān)于直線$x=\frac{5π}{12}$對(duì)稱 | |
C. | 圖象關(guān)于點(diǎn)$(-\frac{π}{3},0)$對(duì)稱 | |
D. | 把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱 |
分析 利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=2sin($ωx+\frac{π}{6}$),由周期公式可求ω,從而可求函數(shù)解析式為f(x)=2sin(2x+$\frac{π}{6}$).利用正弦函數(shù)的平移變換規(guī)律即可得解D選項(xiàng)正確.
解答 解:∵$f(x)=\sqrt{3}sinωx+2{cos^2}\frac{ωx}{2}-1(ω>0)$
=$\sqrt{3}$sinωx+cosωx
=2sin($ωx+\frac{π}{6}$),
又∵最小正周期為π,即$π=\frac{2π}{ω}$,解得:ω=2,
∴f(x)=2sin(2x+$\frac{π}{6}$).
∴把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)解析式為:y=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{2}$)=2cos2x.
由余弦函數(shù)的圖象和性質(zhì)可得此函數(shù)圖象關(guān)于y軸對(duì)稱.D正確.
故選:D.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),考查了正弦函數(shù)的平移變換規(guī)律,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在$[\frac{π}{6},\frac{2π}{3}]$上是增函數(shù) | |
B. | 圖象關(guān)于直線$x=\frac{5π}{12}$對(duì)稱 | |
C. | 圖象關(guān)于點(diǎn)$(-\frac{π}{3},0)$對(duì)稱 | |
D. | 把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2) | C. | (0,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com