(本小題共12分)
已知函數(shù),
(1)若對于定義域內(nèi)的恒成立,求實數(shù)的取值范圍;
(2)設(shè)有兩個極值點,且,求證:;
(3)設(shè)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.
(1),(2) ()
,,且 ()--
()
設(shè) ,
即
(Ⅲ)
解析試題分析:(1), ,設(shè),
當(dāng)時,,當(dāng)時,
,
(2) ()
解法(一),,且 ()--
()
設(shè) ,
即
解法(二),,且 ()
由的極值點可得
(Ⅲ),
所以在上為增函數(shù),,所以,得
,設(shè) ()
,由在恒成立,
① 若,則所以在遞減,此時不符合;
②時,,在遞減,此時不符合;
③時,,若,則在區(qū)間)上遞減,此時不符合;
綜合得,即實數(shù)的取值范圍為
考點:本題考查了導(dǎo)函數(shù)的運用
點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)的定義域為,其中a、b為任
意正實數(shù),且a<b。
(1)當(dāng)A=時,研究的單調(diào)性(不必證明);
(2)寫出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對一切正整數(shù)k不等式都有解,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,其中.
(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)時,在區(qū)間上為減函數(shù);
(3)當(dāng),函數(shù)的圖象恒在函數(shù)圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(II)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個相異的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)是定義在上的偶函數(shù),已知當(dāng)時,.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求在區(qū)間上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),曲線在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)過點能作幾條直線與曲線相切?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com