8.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.$y=\frac{1}{x}$B.y=-2|x|C.$y={log_3}{x^2}$D.y=x-x2

分析 分別偶讀函數(shù)的奇偶性和單調(diào)性是否滿足即可.

解答 解:$y=\frac{1}{x}$是奇函數(shù),不滿足條件.
y=-2|x|為偶函數(shù),當(dāng)x>0時(shí),y=-2|x|=y=-2x,為減函數(shù),滿足條件.
$y={log_3}{x^2}$是偶函數(shù),當(dāng)x>0時(shí),$y={log_3}{x^2}$為增函數(shù),不滿足條件.
y=x-x2的對(duì)稱軸為x=$\frac{1}{2}$,函數(shù)為非奇非偶函數(shù),不滿足條件.
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見(jiàn)函數(shù)奇偶性和單調(diào)性的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為( 。
A.$\frac{20}{31}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),P是橢圓上非x軸上的一點(diǎn),△PF1F2中,若F2(右焦點(diǎn))關(guān)于∠F1PF2的外角平分線的對(duì)稱點(diǎn)Q,則點(diǎn)Q的軌跡是( 。
A.橢圓B.C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-1,2),則(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積等于10+2$\sqrt{3}$+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知:sin($\frac{π}{2}$+θ)+3cos(π-θ)=sin(-θ),則sinθcosθ+cos2θ=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某廠家擬舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為x萬(wàn)元時(shí),銷售量t萬(wàn)件滿足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a2-3a+4,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬(wàn)件還需投入成本(10+2t)萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(t+$\frac{20}{t}$)萬(wàn)元/萬(wàn)件.
(Ⅰ)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(Ⅱ)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),滿足條件y=f(x+1)是偶函數(shù),且當(dāng)x≥1時(shí),f(x)=($\frac{1}{2}$)x-1,則f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的從大到小關(guān)系是f($\frac{2}{3}$)>f($\frac{3}{2}$)>f($\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.存在函數(shù)f(x)滿足,對(duì)于任意x∈R都有(  )
A.f(x2)=xB.f(x2+x)=x+3C.f(|log2x|)=x2+xD.f(x2+2x)=|x+1|

查看答案和解析>>

同步練習(xí)冊(cè)答案