【題目】如圖,是坐標原點,過的直線分別交拋物線于、兩點,直線與過點平行于軸的直線相交于點,過點與此拋物線相切的直線與直線相交于點.則( )
A. B. C. D.
【答案】C
【解析】
過E(p,0)的直線分別交拋物線y2=2px(p>0)于A、B兩點,不妨設(shè)直線AB為x=p,分別求出M,N的坐標,即可求出答案.
過E(p,0)的直線分別交拋物線y2=2px(p>0)于A、B,兩點為任意的,不妨設(shè)直線AB為x=p,由,解得y=±,
則A(p,﹣),B(p,),
∵直線BM的方程為y=x,直線AM的方程為y=-x,
解得M(﹣p,﹣),∴|ME|2=(2p)2+2p2=6p2,
設(shè)過點M與此拋物線相切的直線為y+=k(x+p),
由,消x整理可得ky2﹣2py﹣2+2p2k=0,
∴△=4p2﹣4k(﹣2+2p2k)=0,
解得k=,
∴過點M與此拋物線相切的直線為y+p=(x+p),
由,解得N(p,2p),
∴|NE|2=4p2,
∴|ME|2﹣|NE|2=6p2﹣4p2=2p2,
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中且,.
(1)若函數(shù)f(x)與g(x)有相同的極值點(極值點是指函數(shù)取極值時對應(yīng)的自變量的值),求k的值;
(2)當(dāng)m>0,k = 0時,求證:函數(shù)有兩個不同的零點;
(3)若,記函數(shù),若,使,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)平面向量分解定理的四個命題:
(1)一個平面內(nèi)有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內(nèi)有無數(shù)多對不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個互不平行向量的線性組合.
其中正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,為直角,,,與相交于點,,.
(1)試用、表示向量;
(2)在線段上取一點,在線段上取一點,使得直線過,設(shè),,求的值;
(3)若,過作線段,使得為的中點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實數(shù)的取值范圍;
(3)設(shè),,為曲線上兩點,且,設(shè)直線斜率為,,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com