【題目】已知函數(shù),函數(shù),( ),若對任意,總存在,使得成立,則的取值范圍是__________

【答案】

【解析】對函數(shù)f(x)求導可得 ,

f′(x)=0解得.x變化時,f′(x),f(x)的變化情況如下表所示:

x

0

1

f(x)

 

0

+

 

f(x)

單調遞減

4

單調遞增

3

所以,,f(x)是減函數(shù);,f(x)是增函數(shù)。

x∈[0,1],f(x)的值域是[4,3].

對函數(shù)g(x)求導,g′(x)=3(x2a2).

因為a1,x∈(0,1),g′(x)<3(1a2)0,

因此當x∈(0,1),g(x)為減函數(shù),

從而當x∈[0,1]時有g(x)∈[g(1),g(0)],

g(1)=12a3a2,g(0)=2a,

即當x∈[0,1]時有g(x)∈[12a3a2,2a],

任給x1∈[0,1],f(x1)∈[4,3],存在x0∈[0,1]使得g(x0)=f(x1),

[12a3a2,2a][4,3],,

解①式得a1a,

解②式得a,

a1,a的取值范圍內是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的解析式滿足
(1)求函數(shù)f(x)的解析式;
(2)當a=1時,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點 , 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,底面為矩形, , , , , 為棱上一點,平面與棱交于點.

(Ⅰ)求證: ;

(Ⅱ)求證:

(Ⅲ)若,試問平面是否可能與平面垂直?若能,求出值;若不能,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調研學生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);

(Ⅱ)從對餐廳評分在范圍內的人中隨機選出2人,求2人中恰有1人評分在范圍內的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線是過點,傾斜角為的直線,以直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求曲線的普通方程和曲線的一個參數(shù)方程;

(2)曲線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像經(jīng)過點,曲線在點處的切線恰好與直線垂直.

(1)求實數(shù)的值;

(2)求在函數(shù)圖像上任意一點處切線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: ()的右焦點為F(2,0),且過點P(2, ). 直線過點F且交橢圓C于A、B兩點.

1求橢圓C的方程;

2若線段AB的垂直平分線與x軸的交點為M(),求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系.若直線的極坐標方程為,曲線的極坐標方程為,將曲線上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)已知直線與曲線交于兩點,點,求的值.

查看答案和解析>>

同步練習冊答案