【題目】已知函數(shù),.

(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

(2)設(shè),若不等式對(duì)任意恒成立,求的取值范圍.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)先對(duì)函數(shù)求導(dǎo),然后對(duì)討論.當(dāng)時(shí),上恒成立,函數(shù)單調(diào)遞增,∴上沒(méi)有極值點(diǎn).當(dāng)時(shí),上遞減,在上遞增,即處有極小值,無(wú)極大值.

(2)設(shè),不等式對(duì)任意恒成立,即函數(shù)上的最小值大于零.所以求出的最小值,由最小值大于零求出的取值范圍.

試題解析:(1),

當(dāng)時(shí),上恒成立,

函數(shù)單調(diào)遞增,∴上沒(méi)有極值點(diǎn).

當(dāng)時(shí),,,

上遞減,在上遞增,即處有極小值,無(wú)極大值.

∴當(dāng)時(shí),上沒(méi)有極值點(diǎn),

當(dāng)時(shí),上有一個(gè)極值點(diǎn).

(2)設(shè)

,

不等式對(duì)任意恒成立,即函數(shù)上的最小值大于零.

①當(dāng),即時(shí),上單調(diào)遞減,

所以的最小值為,

可得

因?yàn)?/span>,所以.

②當(dāng),即時(shí),上單調(diào)遞增,

所以最小值為,由可得,即.

③當(dāng),即時(shí),可得最小值為

因?yàn)?/span>,所以,

.

,

綜上可得,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,問(wèn):

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說(shuō)法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若曲線僅在兩個(gè)不同的點(diǎn),處的切線都經(jīng)過(guò)點(diǎn),求證:,或

(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;

(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實(shí)數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

(1)某人10月份應(yīng)交此項(xiàng)稅款為350元,則他10月份的工資收入是多少?

(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.

1)把C1的參數(shù)方程化為極坐標(biāo)方程;

2)求C1C2交點(diǎn)的極坐標(biāo)(.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與

輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立,求:

(1)打滿3局比賽還未停止的概率;

(2)比賽停止時(shí)已打局?jǐn)?shù)ξ的分布列與期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為了提高學(xué)生學(xué)習(xí)英語(yǔ)的興趣,在班內(nèi)舉行英語(yǔ)寫(xiě)、說(shuō)、唱綜合能力比賽,比賽分為預(yù)賽和決賽2個(gè)階段,預(yù)賽為筆試,決賽為說(shuō)英語(yǔ)、唱英語(yǔ)歌曲,將所有參加筆試的同學(xué)(成績(jī)得分為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖,其中后三個(gè)矩形高度之比依次為4:2:1,落在的人數(shù)為12人.

(Ⅰ)求此班級(jí)人數(shù);

(Ⅱ)按規(guī)定預(yù)賽成績(jī)不低于90分的選手參加決賽,已知甲乙兩位選手已經(jīng)取得決賽資格,參加決賽的選手按抽簽方式?jīng)Q定出場(chǎng)順序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)記甲乙二人排在前三位的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論的單調(diào)區(qū)間;

(2)設(shè),當(dāng)有兩個(gè)極值點(diǎn)為,且時(shí),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案