【題目】設數(shù)列{an}的前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號成立的充要條件.
【答案】
(1)證明:∵Sn+1=a2Sn+a1,①
∴Sn+2=a2Sn+1+a1,②
②﹣①可得:an+2=a2an+1
∵a2≠0,∴
∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1
∵a2≠0,∴a1=1
∴{an}是首項為1的等比數(shù)列;
(2)證明:當n=1或2時, 等號成立
設n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1, ,所以要證的不等式可化為
(n≥3)
即證 (n≥2)
a2=1時,等號成立
當﹣1<a2<1時, 與 同為負;
當a2>1時, 與 同為正;
∴a2>﹣1且a2≠1時,( )( )>0,即
上面不等式n分別取1,2,…,n累加可得
∴
綜上, ,等號成立的充要條件是n=1或2或a2=1.
【解析】(1)根據(jù)Sn+1=a2Sn+a1 , 再寫一式,兩式相減,即可證得{an}是首項為1的等比數(shù)列;(2)當n=1或2時, 等號成立,設n≥3,a2>﹣1,且a2≠0,由(1)知a1=1, ,所以要證的不等式可化為 (n≥3),即證 (n≥2),a2=1時,等號成立;再證明a2>﹣1且a2≠1時,( )( )>0,即可證得結論.
【考點精析】利用等比數(shù)列的前n項和公式和等比關系的確定對題目進行判斷即可得到答案,需要熟知前項和公式:;等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;
(Ⅱ)當時,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
極坐標系與直角坐標系有相同的長度單位,以原點為極點,以軸正半軸為極軸.曲線的極坐標方程為,已知傾斜角為的直線經(jīng)過點.
(1)寫出直線的參數(shù)方程;曲線的直角坐標方程;
(2)設直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( )
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費者開始選擇網(wǎng)絡購物這種消費方式某營銷部門統(tǒng)計了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡銷售情況得到網(wǎng)民對不同特產(chǎn)的最滿意度和對應的銷售額(萬元)數(shù)據(jù),如下表:
特產(chǎn)種類 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最滿意度 | ||||||||||
銷售額(萬元) |
求銷量額關于最滿意度的相關系數(shù);
我們約定:銷量額關于最滿意度的相關系數(shù)的絕對值在以上(含)是線性相關性較強;否則,線性相關性較弱.如果沒有達到較強線性相關,則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額關于最滿意度的線性回歸方程(系數(shù)精確到).
參考數(shù)據(jù):,,,.
附:對于一組數(shù)據(jù).其回歸直線方程的斜率和截距的最小二乘法估計公式分別為:,.線性相關系數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com