【題目】已知函數(shù)(其中 為自然對數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;

(Ⅱ)時,證明:

【答案】(1)實數(shù)的取值范圍是;(2)見解析.

【解析】分析:(1)因為函數(shù)無極值,所以上單調(diào)遞增或單調(diào)遞減.即時恒成立,求導分析整理即可得到答案;

(2)由(Ⅰ)可知,當時,當時,,即.欲證 ,只需證即可,構造函數(shù)= ),求導分析整理即可.

詳解:(Ⅰ)函數(shù)無極值, 上單調(diào)遞增或單調(diào)遞減.

時恒成立;

,

,則;

所以上單調(diào)遞減,在上單調(diào)遞增;

,

時,,即,

時,顯然不成立;

所以實數(shù)的取值范圍是.

(Ⅱ)由(Ⅰ)可知,當時,當時,,即.

欲證 ,只需證即可.

構造函數(shù)= ),

恒成立,故單調(diào)遞增,

從而.即,亦即.

得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校課題組為了研究學生的數(shù)學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認為學生的數(shù)學成績與物理成績有關系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐頂點為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,

(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某藝校在一天的6節(jié)課中隨機安排語文、數(shù)學、外語三門文化課和其他三門藝術課各1節(jié),則在課程表上的相鄰兩節(jié)文化課之間最多間隔1節(jié)藝術課的概率為(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年至2020年,第六屆全國文明城市創(chuàng)建工作即將開始.在201797日召開的攀枝花市創(chuàng)文工作推進會上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標.為了確保創(chuàng)文工作,今年初市交警大隊在轄區(qū)開展“機動車不禮讓行人整治行動” .下表是我市一主干路口監(jiān)控設備抓拍的5個月內(nèi) “駕駛員不禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預測該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);

(Ⅲ)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關系,得到如下列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過

駕齡年以上

合計

能否據(jù)此判斷有97.5%的把握認為“禮讓斑馬線”行為與駕齡有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D為AB的中點

(1)求點C到平面A1ABB1的距離;
(2)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球得2分,取出一個黑球得1分.現(xiàn)從該箱中任。o放回,且每球取到的機會均等)3個球,記隨機變量X為取出此3球所得分數(shù)之和.
(1)求X的分布列;
(2)求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為2,分別以 為一邊在空間中作正三角形, ,延長到點,使,連接, .

(1)證明: 平面;

(2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案